如何构建高性能MySQL索引

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介:
    一个索引的常见误区是为每一列创建一个索引,如下面创建的索引:

CREATE TABLE `t` (
  `c1` varchar(50) DEFAULT NULL,
  `c2` varchar(50) DEFAULT NULL,
  `c3` varchar(50) DEFAULT NULL,
  KEY `c1` (`c1`),
  KEY `c2` (`c2`),
  KEY `c3` (`c3`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;


    t表里有三列,并且为每列创建了一个索引。创建索引的人为了能够快速访问表中的任何一列,因此为每一列添加了一个单独的索引。在多个列上创建索引通常并不能很好的提高MySQL查询性能,虽然说MySQL 5.0之后引入了索引合并策略,可以将多个单列索引合并成一个索引,但这并不总是有效的。同时创建多个索引的时候还会增加数据插入的成本,在插入数据的时候需要同时维护多个索引的写入操作。

 
索引的计算

    看下面这条sql语句:

select name from student where id + 1 = 5


    即使我们在student表的id列上建立索引,上面的这条SQL语句也无法使用索引。SQL语句中索引字段不能是表达式的一部分,也不能是函数的参数。

 
索引的长度以及选择性

    尽量不要在一个很长的列上使用索引,否则会导致索引占用的空间很大,同时在进行数据的插入和更新的时候意味着更慢的速度。因此使用uuid列作为索引并不是一个好的选择。从上一篇文章中我们可以知道,为了加快数据的访问索引是需要常驻内存的,假如说我们把64位uuid作为索引,那么随着表中数据量的增加索引的大小也在急剧增加。同时因为uuid并没有顺序性,因此在数据插入的时候都需要从根节点找到当前索引的插入位置,如果同一个节点中的索引大小达到上限,还会导致节点分裂,更加降低了插入速度。
    创建索引另外一个需要考虑的是索引的选择性,通常情况下我们会使用选择性高的列作为索引,但是也不一定一直是这样,下一节会介绍如何权衡索引的选择性。
创建高性能索引
选择正确的索引顺序

    在选择索引的顺序的时候有一个原则:将索引选择性最高的列放在左侧,同时索引的顺序要与查询索引的顺序一致,并且要兼顾考虑排序和分组的需要。在一个多列B树多列中索引的顺序意味着索引首先按照最左侧的列进行排序,其次是第二列。所以无论是where语句还是order by语句都需要尽量满足这个顺序,这样才能更好的使用索引。
索引的选择性

    列的选择性高的含义是通过这一列能够更多的过滤掉无用的数据,举个极端的例子,如果把自增id建成索引那么它的选择性是最高的,因为会把无用的数据都过滤掉,只会剩下一条有效数据。我们可以通过下面的方式来简单衡量某一个列的选择性:

select count(distinct columnA)/count(*) as selectivity from table


当上面的数据越大的时候意味着columnA的选择性越高。这种方式提供了一个衡量平均选择性的办法,但是也不一定是有效的,需要具体情况具体分析。

 
前缀索引

    当遇到特别长的列,但又必须要建立索引的时候可以考虑建立前缀索引。前缀索引的含义是把某一列的前N个字符作为索引,创建前缀索引的方式如下:

alter table test add key(columnA(5));


上面这个语句就是把columnA的前5个字符创建为前缀索引。前缀索引是一种使索引更小、更快的有效办法。但是前缀所有有一个缺点:MySQL无法使用前缀索引来做order by和group by,也无法使用前缀索引做覆盖扫描。
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
目录
相关文章
|
4月前
|
存储 SQL 关系型数据库
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
|
4月前
|
存储 关系型数据库 MySQL
MySQL数据库索引的数据结构?
MySQL中默认使用B+tree索引,它是一种多路平衡搜索树,具有树高较低、检索速度快的特点。所有数据存储在叶子节点,非叶子节点仅作索引,且叶子节点形成双向链表,便于区间查询。
179 4
|
2月前
|
SQL 关系型数据库 MySQL
索引设计实战:如何创建高性能MySQL索引
本文深入解析MySQL索引设计的核心原则与实战技巧,涵盖索引选择性、复合索引、性能优化及常见陷阱等内容,通过实际案例帮助开发者创建高效索引,显著提升数据库查询速度,助你打造高性能数据库系统。
|
4月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
134 2
|
5月前
|
存储 关系型数据库 MySQL
MySQL覆盖索引解释
总之,覆盖索引就像是图书馆中那些使得搜索变得极为迅速和简单的工具,一旦正确使用,就会让你的数据库查询飞快而轻便。让数据检索就像是读者在图书目录中以最快速度找到所需信息一样简便。这样的效率和速度,让覆盖索引成为数据库优化师傅们手中的尚方宝剑,既能够提升性能,又能够保持系统的整洁高效。
166 9
|
6月前
|
机器学习/深度学习 关系型数据库 MySQL
对比MySQL全文索引与常规索引的互异性
现在,你或许明白了这两种索引的差异,但任何技术决策都不应仅仅基于理论之上。你可以创建你的数据库实验环境,尝试不同类型的索引,看看它们如何影响性能,感受它们真实的力量。只有这样,你才能熟悉它们,掌握什么时候使用全文索引,什么时候使用常规索引,以适应复杂多变的业务需求。
183 12
|
2月前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
133 3
|
2月前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。
|
2月前
|
关系型数据库 MySQL 分布式数据库
阿里云PolarDB云原生数据库收费价格:MySQL和PostgreSQL详细介绍
阿里云PolarDB兼容MySQL、PostgreSQL及Oracle语法,支持集中式与分布式架构。标准版2核4G年费1116元起,企业版最高性能达4核16G,支持HTAP与多级高可用,广泛应用于金融、政务、互联网等领域,TCO成本降低50%。
|
2月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS费用价格:MySQL、SQL Server、PostgreSQL和MariaDB引擎收费标准
阿里云RDS数据库支持MySQL、SQL Server、PostgreSQL、MariaDB,多种引擎优惠上线!MySQL倚天版88元/年,SQL Server 2核4G仅299元/年,PostgreSQL 227元/年起。高可用、可弹性伸缩,安全稳定。详情见官网活动页。

推荐镜像

更多