Demo1 - 一元线性回归

简介: scikit-learn的一元线性回归y = a + bx(已知一堆 x,y的值, 找到a,b的值)。编写代码scikit_learn_linear_model_demo.

scikit-learn的一元线性回归

y = a + bx
(已知一堆 x,y的值, 找到a,b的值)。

编写代码scikit_learn_linear_model_demo.py如下:

import numpy as np
from sklearn.linear_model import LinearRegression

x = [[1],[2],[3],[4],[5],[6]]
y = [[1],[2.1],[2.9],[4.2],[5.1],[5.8]]
model = LinearRegression()
model.fit(x, y)
predicted = model.predict([13])[0]
print predicted

执行结果:

[[ 12.82666667]]

这里面的model是一个estimator,它通过fit()方法来算出模型参数,并通过predict()方法来预测

LinearRegression的fit()方法就是学习这个一元线性回归模型:

目录
相关文章
|
数据可视化 数据处理
R一元线性回归
R一元线性回归
191 0
R一元线性回归
一元线性回归
一元线性回归
322 0
一元线性回归
|
机器学习/深度学习 算法 数据挖掘
线性回归算法推导与实战(二)
本文属于 线性回归算法【AIoT阶段三】(尚未更新),这里截取自其中一段内容,方便读者理解和根据需求快速阅读。本文通过公式推导+代码两个方面同时进行,因为涉及到代码的编译运行,如果你没有NumPy,Pandas,Matplotlib的基础,建议先修文章:数据分析三剑客【AIoT阶段一(下)】(十万字博文 保姆级讲解)
259 0
线性回归算法推导与实战(二)
|
机器学习/深度学习 算法 数据挖掘
线性回归算法推导与实战(一)
本文属于 线性回归算法【AIoT阶段三】(尚未更新),这里截取自其中一段内容,方便读者理解和根据需求快速阅读。本文通过公式推导+代码两个方面同时进行,因为涉及到代码的编译运行,如果你没有NumPy,Pandas,Matplotlib的基础,建议先修文章:数据分析三剑客【AIoT阶段一(下)】(十万字博文 保姆级讲解)
189 0
线性回归算法推导与实战(一)
|
机器学习/深度学习 Python
线性回归 最小二乘法的求解推导与基于Python的底层代码实现
作为最常见的方法之一,线性回归仍可视为有监督机器学习的方法之一,同时也是一种广泛应用统计学和数据分析的基本技术。它是一种用于估计两个或多个变量之间线性关系的方法,其中一个变量是自变量,另一个变量是因变量。线性回归假设这两个变量之间存在线性关系,并试图找到一条最佳拟合直线,使预测值与实际值之间的误差最小化。
|
机器学习/深度学习 数据可视化 Python
机器学习:从公式推导到代码实现一元线性回归
机器学习:从公式推导到代码实现一元线性回归
274 0
机器学习:从公式推导到代码实现一元线性回归
|
算法 机器学习/深度学习 数据挖掘
浅谈多变量线性回归中的数据规范化
  简单来说,它主要用来把所有特征值范围映射至同样的范围里面如(0,1)、(-1,1)、(-0.5,0.5)等。   Feature scaling (数据规范化) 是数据挖掘或机器学习常用到的步骤,这个步骤有时对算法的效率和准确率都会产生巨大的影响。
1093 0
|
8月前
|
机器学习/深度学习 算法 数据可视化
[04-00]单变量线性回归问题
[04-00]单变量线性回归问题
|
机器学习/深度学习 算法
最小二乘法的极大似然解释
在真实数据中,一个x值可能对应多个y值,因为实际y值可能是受多种因素影响,所以我们可以假设任意一个x对于的y的真实值服从正态分布。我们什么时候可以认为模型 hθ(x)hθ(x) 拟合出来的点最好?当然是 hθ(x)hθ(x) 取值概率最大的时候。
95 1
|
8月前
|
算法
线性回归原理(二)
**线性回归与梯度下降简介:** 梯度下降是一种优化算法,常用于线性回归,模拟下山过程寻找函数最小值。在单变量线性回归中,以函数f(x)=x²为例,从初始点开始,每次迭代沿着负梯度(函数增快的方向相反)移动,通过学习率α控制步长。重复此过程,逐步逼近最小值x=0。在多变量情况下,梯度是一个向量,指向函数增长最快的方向。评估线性回归模型性能的指标有平均绝对误差(MAE)、均方误差(MSE)和均方根误差(RMSE),它们衡量预测值与实际值的差距,越小表示模型越准确。

热门文章

最新文章