数据提取之JSON与JsonPATH

简介:

JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,它使得人们很容易的进行阅读和编写。同时也方便了机器进行解析和生成。适用于进行数据交互的场景,比如网站前台与后台之间的数据交互。

JSON和XML的比较可谓不相上下。

Python 2.7中自带了JSON模块,直接import json就可以使用了。

官方文档:http://docs.python.org/library/json.html

Json在线解析网站:http://www.json.cn/#

JSON
json简单说就是javascript中的对象和数组,所以这两种结构就是对象和数组两种结构,通过这两种结构可以表示各种复杂的结构:

  1. 对象:对象在js中表示为{ }括起来的内容,数据结构为 { key:value, key:value, ... }的键值对的结构,在面向对象的语言中,key为对象的属性,value为对应的属性值,所以很容易理解,取值方法为 对象.key 获取属性值,这个属性值的类型可以是数字、字符串、数组、对象这几种。
  2. 数组:数组在js中是中括号[ ]括起来的内容,数据结构为 ["Python", "javascript", "C++", ...],取值方式和所有语言中一样,使用索引获取,字段值的类型可以是 数字、字符串、数组、对象几种。

import json

json模块提供了四个功能:dumps、dump、loads、load,用于字符串 和 python数据类型间进行转换。

1. json.loads()
把Json格式字符串解码转换成Python对象 从json到python的类型转化对照如下:
json2

# json_loads.py

import json

strList = '[1, 2, 3, 4]'

strDict = '{"city": "北京", "name": "大猫"}'

json.loads(strList) 
# [1, 2, 3, 4]

json.loads(strDict) # json数据自动按Unicode存储
# {u'city': u'\u5317\u4eac', u'name': u'\u5927\u732b'}

2. json.dumps()
实现python类型转化为json字符串,返回一个str对象 把一个Python对象编码转换成Json字符串

从python原始类型向json类型的转化对照如下:

json

# json_dumps.py

import json
import chardet

listStr = [1, 2, 3, 4]
tupleStr = (1, 2, 3, 4)
dictStr = {"city": "北京", "name": "大猫"}

json.dumps(listStr)
# '[1, 2, 3, 4]'
json.dumps(tupleStr)
# '[1, 2, 3, 4]'

# 注意:json.dumps() 处理中文时默认使用的ascii编码,会导致中文无法正常显示
print json.dumps(dictStr) 
# {"city": "\u5317\u4eac", "name": "\u5927\u732b"}

# 记住:处理中文时,添加参数 ensure_ascii=False 来禁用ascii编码
print json.dumps(dictStr, ensure_ascii=False) 
# {"city": "北京", "name": "大刘"}

3. json.dump()
将Python内置类型序列化为json对象后写入文件

# json_dump.py

import json

listStr = [{"city": "北京"}, {"name": "大刘"}]
json.dump(listStr, open("listStr.json","w"), ensure_ascii=False)

dictStr = {"city": "北京", "name": "大刘"}
json.dump(dictStr, open("dictStr.json","w"), ensure_ascii=False)

4. json.load()
读取文件中json形式的字符串元素 转化成python类型

# json_load.py

import json

strList = json.load(open("listStr.json"))
print strList

# [{u'city': u'\u5317\u4eac'}, {u'name': u'\u5927\u5218'}]

strDict = json.load(open("dictStr.json"))
print strDict
# {u'city': u'\u5317\u4eac', u'name': u'\u5927\u5218'}

JsonPath
JsonPath 是一种信息抽取类库,是从JSON文档中抽取指定信息的工具,提供多种语言实现版本,包括:Javascript, Python, PHP 和 Java。

JsonPath 对于 JSON 来说,相当于 XPath 对于 XML。

JsonPath与XPath语法对比:
Json结构清晰,可读性高,复杂度低,非常容易匹配,下表中对应了XPath的用法。

WX20181128_135920_2x
示例:
我们以拉勾网城市JSON文件 http://www.lagou.com/lbs/getAllCitySearchLabels.json 为例,获取所有城市。

# jsonpath_lagou.py

import urllib2
import jsonpath
import json

url = 'http://www.lagou.com/lbs/getAllCitySearchLabels.json'
request =urllib2.Request(url)
response = urllib2.urlopen(request)
html = response.read()

# 把json格式字符串转换成python对象
jsonobj = json.loads(html)

# 从根节点开始,匹配name节点
citylist = jsonpath.jsonpath(jsonobj,'$..name')

print citylist
print type(citylist)
fp = open('city.json','w')

content = json.dumps(citylist, ensure_ascii=False)
print content

fp.write(content.encode('utf-8'))
fp.close()

注意事项:
json.loads() 是把 Json格式字符串解码转换成Python对象,如果在json.loads的时候出错,要注意被解码的Json字符的编码,如果传入的字符串的编码不是UTF-8的话,需要指定字符编码的参数encoding

如:

dataDict = json.loads(jsonStrGBK);

jsonStrGBK是JSON字符串,假设其编码本身是非UTF-8的话而是GBK 的,那么上述代码会导致出错,改为对应的:

 dataDict = json.loads(jsonStrGBK, encoding="GBK");

附:字符串编码转换
这是中国程序员最苦逼的地方,什么乱码之类的几乎都是由汉字引起的。 其实编码问题很好搞定,只要记住一点:

任何平台的任何编码 都能和 Unicode 互相转换
UTF-8 与 GBK 互相转换,那就先把UTF-8转换成Unicode,再从Unicode转换成GBK,反之同理。

# 这是一个 UTF-8 编码的字符串
utf8Str = "你好地球"

# 1. 将 UTF-8 编码的字符串 转换成 Unicode 编码
unicodeStr = utf8Str.decode("UTF-8")

# 2. 再将 Unicode 编码格式字符串 转换成 GBK 编码
gbkData = unicodeStr.encode("GBK")

# 1. 再将 GBK 编码格式字符串 转化成 Unicode
unicodeStr = gbkData.decode("gbk")

# 2. 再将 Unicode 编码格式字符串转换成 UTF-8
utf8Str = unicodeStr.encode("UTF-8")

decode的作用是将其他编码的字符串转换成 Unicode 编码

encode的作用是将 Unicode 编码转换成其他编码的字符串

一句话:UTF-8是对Unicode字符集进行编码的一种编码方式


本文最终解释权归本文作者所有,未经允许不得私自转载

相关文章
|
22天前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
8天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
12天前
|
JSON 缓存 前端开发
PHP如何高效地处理JSON数据:从编码到解码
在现代Web开发中,JSON已成为数据交换的标准格式。本文探讨了PHP如何高效处理JSON数据,包括编码和解码的过程。通过简化数据结构、使用优化选项、缓存机制及合理设置解码参数等方法,可以显著提升JSON处理的性能,确保系统快速稳定运行。
|
5天前
|
JSON API 数据安全/隐私保护
拍立淘按图搜索API接口返回数据的JSON格式示例
拍立淘按图搜索API接口允许用户通过上传图片来搜索相似的商品,该接口返回的通常是一个JSON格式的响应,其中包含了与上传图片相似的商品信息。以下是一个基于淘宝平台的拍立淘按图搜索API接口返回数据的JSON格式示例,同时提供对其关键字段的解释
|
27天前
|
JSON JavaScript Java
在Java中处理JSON数据:Jackson与Gson库比较
本文介绍了JSON数据交换格式及其在Java中的应用,重点探讨了两个强大的JSON处理库——Jackson和Gson。文章详细讲解了Jackson库的核心功能,包括数据绑定、流式API和树模型,并通过示例演示了如何使用Jackson进行JSON解析和生成。最后,作者分享了一些实用的代码片段和使用技巧,帮助读者更好地理解和应用这些工具。
在Java中处理JSON数据:Jackson与Gson库比较
|
29天前
|
JSON API 数据格式
商品详情数据JSON格式示例参考(api接口)
JSON数据格式的商品详情数据通常包含商品的多个层级信息,以下是一个综合多个来源信息的JSON数据格式的商品详情数据示例参考:
|
30天前
|
存储 JSON 前端开发
JSON与现代Web开发:数据交互的最佳选择
JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,易于人阅读和编写,同时也便于机器解析和生成。它以文本格式存储数据,常用于Web应用中的数据传输,尤其是在客户端和服务器之间。
42 0
|
2月前
|
XML 存储 JSON
Twaver-HTML5基础学习(19)数据容器(2)_数据序列化_XML、Json
本文介绍了Twaver HTML5中的数据序列化,包括XML和JSON格式的序列化与反序列化方法。文章通过示例代码展示了如何将DataBox中的数据序列化为XML和JSON字符串,以及如何从这些字符串中反序列化数据,重建DataBox中的对象。此外,还提到了用户自定义属性的序列化注册方法。
45 1
|
1月前
|
JSON JavaScript API
(API接口系列)商品详情数据封装接口json数据格式分析
在成长的路上,我们都是同行者。这篇关于商品详情API接口的文章,希望能帮助到您。期待与您继续分享更多API接口的知识,请记得关注Anzexi58哦!
|
1月前
|
JSON 前端开发 Java
【Spring】“请求“ 之传递 JSON 数据
【Spring】“请求“ 之传递 JSON 数据
84 2