综述:DenseNet—Dense卷积网络(图像分类)

简介: 与 ResNet 和 Pre-Activation ResNet 相比,DenseNet 具有较少的参数和较高的精度。那么,让我们看看它是如何工作的。

目录

 ●   Dense Block
 ●   DenseNet 结构
 ●   DenseNet 的优势
 ●   CIFAR & SVHN 小规模数据集结果
 ●   ImageNet 大规模数据集结果

 ●  特征复用的进一步分析

Dense Block

fd24fd0dcadb8b7cb093a83632fee2a95bfef17e

在Standard ConvNet中,输入图像经过多次卷积,得到高层次特征。

21cd3f4dbe1934c248e85b905f95dd745fa17a99

在ResNet中,提出了恒等映射(identity mapping)来促进梯度传播,同时使用使用 element 级的加法。它可以看作是将状态从一个ResNet 模块传递到另一个ResNet 模块的算法。

cb73b9ea9850c3fe9c1f9896e1802fe7293ee6cf

在 DenseNet 中,每个层从前面的所有层获得额外的输入,并将自己的特征映射传递到后续的所有层,使用级联方式,每一层都在接受来自前几层的“集体知识(collective knowledge)”。

dbf5dd7ccb58fe9777b52398bdc1dd78ba0c3d3d

由于每个层从前面的所有层接收特征映射,所以网络可以更薄、更紧凑,即信道数可以更少。增长速率k是每个层的附加信道数。

因此,它具有较高的计算效率和存储效率。下图显示了前向传播中级联的概念:

d9d6875bc1e62bb97db00f11581fcafded60afae

DenseNet 结构

1. 基础 DenseNet 组成层

e76116ed4bb0cb696254a5684215ff3f255db3c1

对于每个组成层使用 Pre-Activation Batch Norm (BN) 和 ReLU,然后用k通道的输出特征映射进行 3×3 卷积,例如,将x0、x1、x2、x3转换为x4。这是 Pre-Activation ResNet 的想法。

2. DenseNet-B (Bottleneck 层)

b604a14071d9aa1a8f135efec52680ca3eeedf9a

为了降低模型的复杂度和规模,在BN-ReLU-3×3 conv之前进行了BN-ReLU-1×1 conv.

3. 具有转换层(transition layer)的多Dense块

ade4217ea4dfebba582257a75d2611a9c60db49e

采用1×1 Conv和2×2平均池化作为相邻 dense block 之间的转换层。

特征映射大小在 dense block 中是相同的,因此它们可以很容易地连接在一起。

在最后一个 dense block 的末尾,执行一个全局平均池化,然后附加一个Softmax分类器。

4. DenseNet-BC (进一步压缩)

如果 Dense Block 包含m个特征映射,则转换层(transition layer)生成 θm 输出特征映射,其中 0<θ≤1 称为压缩因子。

当θ=1时,跨转换层的特征映射数保持不变。在实验中,θ<1的 DenseNet 称为 DenseNet-C,θ=0.5。

当同时使用 bottleneck 和 θ<1 时的转换层时,该模型称为 DenseNet-BC 模型。

最后,训练 with/without B/C 和不同L层和k生长速率的 DenseNet。

DenseNet的优势

1.强梯度流

38c430f50ed421e2af29eb950f563fe7cef493df

误差信号可以更直接地传播到早期的层中。这是一种隐含的深度监督,因为早期的层可以从最终的分类层直接获得监督。

2. 参数和计算效率

09f7de98ab470aed4a0fa700234118327ce89638

对于每个层,RetNet 中的参数与c×c成正比,而 DenseNet 中的参数与1×k×k成正比。

由于 k<<C, 所以 DenseNet 比 ResNet 的size更小。

3. 更加多样化的特征

9aee3d663f56efd062cec655b032c7e1f5f84dc2

由于 DenseNet 中的每一层都接收前面的所有层作为输入,因此特征更加多样化,并且倾向于有更丰富的模式。

4. 保持低复杂度特征

f9ae4ac8b8734471d9346c062ab4af7fa23d18d7

在标准ConvNet中,分类器使用最复杂的特征。

d2e8ae131c2bf3b685a11367f3a228ad63b79ec3

在 DenseNet 中,分类器使用所有复杂级别的特征。它倾向于给出更平滑的决策边界。它还解释了为什么 DenseNet 在训练数据不足时表现良好。

CIFAR & SVHN 小规模数据集结果

1. CIFAR-10

25b647882f28738365a372ae8b14637ea9539983

详细比较Pre-Activation ResNet。

数据增强(C10+),测试误差:

 ●  Small-size ResNet-110: 6.41%
 ●  Large-size ResNet-1001 (10.2M parameters): 4.62%
 ●  State-of-the-art (SOTA) 4.2%
 ●  Small-size DenseNet-BC ( L =100, k =12) (Only 0.8M parameters): 4.5%
 ●  Large-size DenseNet ( L =250, k =24): 3.6%

无数据增强(C10),测试误差:

 ●  Small-size ResNet-110: 11.26%
 ●  Large-size ResNet-1001 (10.2M parameters): 10.56%
 ●  State-of-the-art (SOTA) 7.3%
 ●  Small-size DenseNet-BC ( L =100, k =12) (Only 0.8M parameters): 5.9%
 ●  Large-size DenseNet ( L =250, k =24): 4.2%

在 Pre-Activation ResNet 中出现严重的过拟合,而 DenseNet 在训练数据不足时表现良好,因为DenseNet 使用了复杂的特征。

0e5212b218910ff6a7af8999363700f9a89c91bd

左:DenseNet-BC获得最佳效果。

中:Pre-Activation ResNet 已经比 alexnet 和 vggnet 获得更少的参数,DenseNet-BC(k=12)的参数比 Pre-Activation ResNet 少3×10,测试误差相同。

右:与 Pre-Activation ResNet-1001有10.2m参数相比,0.8参数的DenseNet-BC-100具有相似的测试误差。

2. CIFAR-100

CIFAR-100类似的趋势如下:

5c7d75b007e1918a4c81c9ab7997f47762858840

3. 具体结果

06de49252874292c5701ff44a4f8f06e84a3b696

SVHN是街景房屋编号的数据集。蓝色代表最好的效果。DenseNet-BC不能得到比基本 DenseNet 更好的结果,作者认为SVHN是一项相对容易的任务,非常深的模型可能会过拟合。

ImageNet 大规模数据集结果

67624fe445e2e57bd47a7b84ce37b805047f3dd1

左:20M参数的DenseNet-201与大于40M参数的ResNet-101产生类似的验证错误。

右:相似的计算次数趋势(GOLOPS)。

底部:DenseNet-264(k=48)最高误差为20.27%,前5误差为5.17%。

特征复用的进一步分析

c8d9a40becbb8146295aba6cc9bcc9f9a3801cd7

 ●  从非常早期的层中提取的特征被同一 Dense Block 中的较深层直接使用。
 ●  转换层的权重也分布在前面的所有层中。
 ●  第二和第三dense block内的各层一贯地将最小权重分配给转换层的输出。(第一行)

 ●  在最终分类层,权重似乎集中在最终feature map上。一些更高级的特性在网络中产生得很晚。


原文发布时间为:2018-11-26

本文作者:Xiaowen

本文来自云栖社区合作伙伴“专知”,了解相关信息可以关注“专知”。

相关文章
|
20天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【8月更文挑战第28天】本文将深入探讨深度学习领域的核心概念之一——卷积神经网络(CNN),并展示其在图像识别任务中的强大能力。文章首先介绍CNN的基本结构,然后通过一个简单的代码示例来演示如何构建一个基础的CNN模型。接着,我们将讨论CNN如何处理图像数据以及它在图像分类、检测和分割等任务中的应用。最后,文章将指出CNN面临的挑战和未来的发展方向。
|
2天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习入门:理解卷积神经网络(CNN)
【9月更文挑战第14天】本文旨在为初学者提供一个关于卷积神经网络(CNN)的直观理解,通过简单的语言和比喻来揭示这一深度学习模型如何识别图像。我们将一起探索CNN的基本组成,包括卷积层、激活函数、池化层和全连接层,并了解它们如何协同工作以实现图像分类任务。文章末尾将给出一个简单的代码示例,帮助读者更好地理解CNN的工作原理。
15 7
|
8天前
|
机器学习/深度学习 自然语言处理 自动驾驶
CNN的魅力:探索卷积神经网络的无限可能
卷积神经网络(Convolutional Neural Networks, CNN)作为人工智能的重要分支,在图像识别、自然语言处理、医疗诊断及自动驾驶等领域展现了卓越性能。本文将介绍CNN的起源、独特优势及其广泛应用,并通过具体代码示例展示如何使用TensorFlow和Keras构建和训练CNN模型。
|
8天前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
8天前
|
编解码 人工智能 文件存储
卷积神经网络架构:EfficientNet结构的特点
EfficientNet是一种高效的卷积神经网络架构,它通过系统化的方法来提升模型的性能和效率。
14 1
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
深入浅出卷积神经网络(CNN)的奥秘
【9月更文挑战第3天】在人工智能的浪潮中,卷积神经网络(CNN)无疑是最耀眼的明星之一。本文将通过浅显易懂的语言,带你一探CNN的核心原理和应用实例。从图像处理到自然语言处理,CNN如何改变我们对数据的解读方式?让我们一起走进CNN的世界,探索它的魅力所在。
|
17天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)入门
【8月更文挑战第31天】在人工智能的璀璨星空中,卷积神经网络(CNN)如同一颗耀眼的星辰,以其卓越的图像处理能力在深度学习领域熠熠生辉。本文将带你领略CNN的魅力,从其结构原理到实战应用,深入浅出地探索这一技术的奥秘。我们将通过Python代码片段,一起实现一个简单的CNN模型,并讨论其在现实世界问题中的应用潜力。无论你是初学者还是有一定基础的开发者,这篇文章都将为你打开一扇通往深度学习世界的大门。
|
20天前
|
机器学习/深度学习 算法框架/工具 计算机视觉
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【8月更文挑战第28天】本文深入探讨了深度学习领域中的一个核心概念——卷积神经网络(CNN),并详细解释了其在图像识别任务中的强大应用。从CNN的基本结构出发,我们逐步展开对其工作原理的解析,并通过实际代码示例,展示如何利用CNN进行有效的图像处理和识别。文章旨在为初学者提供一个清晰的学习路径,同时也为有经验的开发者提供一些深入的见解和应用技巧。
32 1
|
20天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深入浅出卷积神经网络——从理论到实践
【8月更文挑战第28天】探索卷积神经网络的奥秘,本文将带你领略深度学习中的这一核心技术。我们将从CNN的基本概念出发,逐步深入到网络架构、训练技巧,以及在图像处理中的应用实例。无论你是初学者还是有一定基础的开发者,这篇文章都将为你揭开卷积神经网络的神秘面纱,让你能够更加自信地应用这项技术解决实际问题。
|
3天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【9月更文挑战第13天】本文将深入浅出地介绍卷积神经网络(CNN)的基本原理,并探讨其在图像识别领域的应用。通过实例演示如何利用Python和TensorFlow框架实现一个简单的CNN模型,我们将一步步从理论到实践,揭示CNN如何改变现代图像处理技术的面貌。无论你是深度学习新手还是希望深化理解,这篇文章都将为你提供价值。