Docker容器生产实践1——永远设置容器内存限制

简介: 背景在默认情况下,docker容器并不会对容器内部进程使用的内存大小进行任何限制。对于PaaS系统而言,或者对于直接使用docker的用户而言,这非常危险。

背景

在默认情况下,docker容器并不会对容器内部进程使用的内存大小进行任何限制。对于PaaS系统而言,或者对于直接使用docker的用户而言,这非常危险。如果哪个业务容器,出现了内存泄漏;那么它可能会危害到整个主机系统,导致业务app容器所在的主机出现oom。本文将介绍着眼于docker对内存资源的使用,解释背后的原理。同时也给出k8s上如何配置内存限制的方法。

docker run、create时刻对容器使用内存大小进行限制

-m硬限制容器使用的内存

通过下面参数可以为容器设置一个内存使用量硬大小,当超出这个大小时刻,linux系统会根据配置设置决定是否进入oom-killer状态。
docker run --name zxy-docker -m 1g -it busybox bash
单位为:b,k,m和g
如果设置了-m参数,通常情况下如果容器使用内存量超过了设置的硬水线,那么linux的oom-killer触发,它将根据oom-score对容器内部进程进行oom kill。但是不影响宿主机上其他进程。

--oom-kill-disable

这个参数设置一定需要在容器run或者create过程中使用了-m参数才可以设置。设置了-m参数,如果容器使用内存超限了,那么oom-kill将触发。如果设置了--oom-kill-disable,那么容器不会oom,但是此时容器内部申请内存的进程将hang,直到他们可以申请到内存(容器内其他进程释放了内存)
绝对不要在没有使用-m的时候设置--oom-kill-disable 因为这会影响到宿主机的oom-killer

背后的原理

docker 设置容器的-m是通过设置memory cgoup的memory.limit_in_bytes实现的。在没有设置-m的时候这个值为-1,表示容器使用的内存不受限制。
例如:
`bash>docker run --name zxy-memorylimit -it -m 1g docker-build:12.06 bash
bash>docker inspect zxy-memorylimit|grep -i pid
“Pid”:24360

bash>cat /proc/24360/cgroup|grep memory
9:memory:/docker/xxxxx
bash>cd /sys/fs/cgroups/memory/docker/xxxx
bash> cat memory.limit_in_bytes
1073741824`

--oom-kill-disable参数实际设置的就是这是了同级目录之下的memory.oom_control,设置此参数就相当于做了如下动作
bash> echo 1 >memory.oom_control
对linux memory cgroup感兴趣的朋友可以参考:
https://segmentfault.com/a/1190000008125359 一文

--memory-reservation 软限制容器使用的内存

在上一节中,我们介绍了-m硬限制容器使用的内存资源。一旦设置了这个-m参数,那么容器内进程使用量超过这个数值,就会被杀或者hang住。docker还提供了一种soft limit就是--memory-reservation,单位和-m一致。当设置了这个参数以后,如果宿主机系统内存不足,有新的内存请求时刻,那么linux会尝试从设置了此参数的容器里回收内存,回收的办法就是swap了。那么如果此容器还在继续使用内存,那么此容器会遇到很大的性能下降
通常实践是设置--memory-reservevation 的值小于-m的值。

背后的原理

和-m参数一致,此参数docker也是借助于memory cgroup的memory.soft_limit_in_bytes 实现。

其他内存资源参数

  • --memory-swap
    配置容器可以设置的swap大小。此值为-m值加上能达到的swap区大小,例如--memory-swap = 500M
    -m =300M,意味着真正的swap大小可以的到200M。默认情况下容器可以得到最大swap大小为-m参数设置的两倍,此参数设置为0,为无效参数。如果--m和--memory-swap相等,相当于关闭容器的swap。值-1表示swap大小为不限
  • --memory-swappiness
    配置容器的swappiness属性,从0到100。0表示无论何种情况下都不要启动swap,100表示只要有可能就启动swap。
    此参数和系统的
    /proc/sys/vm/swappiness
    含义一致,不过它设置的容器所在memory cgroup的swappiness。
    默认情况下容器的此值继承自主机侧的swappiness配置。对于centos系统和ubuntu系统,内存充裕可以设置为10.
    swappiness设置的是匿名页(anonymous page,也就是malloc和mmap以map_anonymous方式申请的内存)是否愿意交换出去

docker做了什么

docker做的工作实际上是由runc完成的,docker 创建的hostconfig.json文件(也就是oci接口文件)中,有如下字段描述-m,--memory-reservation等内存资源限制参数:
memory MemoryReservation MemorySwap MemorySwappiness

docker生产实践

  • 永远需要设置-m
  • 不要轻易设置--oom-kill-disable,memory-swappiness,memory-swap和memory-reservation,因为一半情况下,你不太容易理解它们真正如何作用于系统。

k8s如何使用docker限制内存的参数

下文节选自https://mp.weixin.qq.com/s/j2FfqUHSRTzczNcfPuwRQw

K8s资源限制是通过每个容器containerSpec的resources字段进行设置的,它是v1版本的ResourceRequirements类型的API对象。每个指定了"limits"和"requests"的对象都可以控制对应的资源。目前只有CPU和内存两种资源。大多数情况下,deployment、statefulset、daemonset的定义里都包含了podSpec和多个containerSpec。这里有个完整的v1资源对象的yaml格式配置:
`resources:
requests:
cpu: 50m
memory: 50Mi
limits:
cpu: 100m
memory: 100Mi

`

其中limits节限制memory设置的就是docker 容器的-m,而且k8s仅仅使用了-m参数其他参数都没有使用。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
6天前
|
Ubuntu API 网络虚拟化
ubuntu22 编译安装docker,和docker容器方式安装 deepseek
本脚本适用于Ubuntu 22.04,主要功能包括编译安装Docker和安装DeepSeek模型。首先通过Apt源配置安装Docker,确保网络稳定(建议使用VPN)。接着下载并配置Docker二进制文件,创建Docker用户组并设置守护进程。随后拉取Debian 12镜像,安装系统必备工具,配置Ollama模型管理器,并最终部署和运行DeepSeek模型,提供API接口进行交互测试。
121 15
|
1月前
|
Ubuntu NoSQL Linux
《docker基础篇:3.Docker常用命令》包括帮助启动类命令、镜像命令、有镜像才能创建容器,这是根本前提(下载一个CentOS或者ubuntu镜像演示)、容器命令、小总结
《docker基础篇:3.Docker常用命令》包括帮助启动类命令、镜像命令、有镜像才能创建容器,这是根本前提(下载一个CentOS或者ubuntu镜像演示)、容器命令、小总结
159 6
《docker基础篇:3.Docker常用命令》包括帮助启动类命令、镜像命令、有镜像才能创建容器,这是根本前提(下载一个CentOS或者ubuntu镜像演示)、容器命令、小总结
|
1月前
|
Kubernetes Linux 虚拟化
入门级容器技术解析:Docker和K8s的区别与关系
本文介绍了容器技术的发展历程及其重要组成部分Docker和Kubernetes。从传统物理机到虚拟机,再到容器化,每一步都旨在更高效地利用服务器资源并简化应用部署。容器技术通过隔离环境、减少依赖冲突和提高可移植性,解决了传统部署方式中的诸多问题。Docker作为容器化平台,专注于创建和管理容器;而Kubernetes则是一个强大的容器编排系统,用于自动化部署、扩展和管理容器化应用。两者相辅相成,共同推动了现代云原生应用的快速发展。
198 11
|
2月前
|
Ubuntu Linux 开发工具
docker 是什么?docker初认识之如何部署docker-优雅草后续将会把产品发布部署至docker容器中-因此会出相关系列文章-优雅草央千澈
Docker 是一个开源的容器化平台,允许开发者将应用程序及其依赖项打包成标准化单元(容器),确保在任何支持 Docker 的操作系统上一致运行。容器共享主机内核,提供轻量级、高效的执行环境。本文介绍如何在 Ubuntu 上安装 Docker,并通过简单步骤验证安装成功。后续文章将探讨使用 Docker 部署开源项目。优雅草央千澈 源、安装 Docker 包、验证安装 - 适用场景:开发、测试、生产环境 通过以上步骤,您可以在 Ubuntu 系统上成功安装并运行 Docker,为后续的应用部署打下基础。
96 8
docker 是什么?docker初认识之如何部署docker-优雅草后续将会把产品发布部署至docker容器中-因此会出相关系列文章-优雅草央千澈
|
2月前
|
存储 Kubernetes 开发者
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
Docker 是一种开源的应用容器引擎,允许开发者将应用程序及其依赖打包成可移植的镜像,并在任何支持 Docker 的平台上运行。其核心概念包括镜像、容器和仓库。镜像是只读的文件系统,容器是镜像的运行实例,仓库用于存储和分发镜像。Kubernetes(k8s)则是容器集群管理系统,提供自动化部署、扩展和维护等功能,支持服务发现、负载均衡、自动伸缩等特性。两者结合使用,可以实现高效的容器化应用管理和运维。Docker 主要用于单主机上的容器管理,而 Kubernetes 则专注于跨多主机的容器编排与调度。尽管 k8s 逐渐减少了对 Docker 作为容器运行时的支持,但 Doc
176 5
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
|
2月前
|
关系型数据库 应用服务中间件 PHP
实战~如何组织一个多容器项目docker-compose
本文介绍了如何使用Docker搭建Nginx、PHP和MySQL的环境。首先启动Nginx容器并查看IP地址,接着启动Alpine容器并安装curl测试连通性。通过`--link`方式或`docker-compose`配置文件实现服务间的通信。最后展示了Nginx配置文件和PHP代码示例,验证了各服务的正常运行。
84 3
实战~如何组织一个多容器项目docker-compose
|
2月前
|
人工智能 运维 监控
阿里云ACK容器服务生产级可观测体系建设实践
本文整理自2024云栖大会冯诗淳(花名:行疾)的演讲,介绍了阿里云容器服务团队在生产级可观测体系建设方面的实践。冯诗淳详细阐述了容器化架构带来的挑战及解决方案,强调了可观测性对于构建稳健运维体系的重要性。文中提到,阿里云作为亚洲唯一蝉联全球领导者的容器管理平台,其可观测能力在多项关键评测中表现优异,支持AI、容器网络、存储等多个场景的高级容器可观测能力。此外,还介绍了阿里云容器服务在多云管理、成本优化等方面的最新进展,以及即将推出的ACK AI助手2.0,旨在通过智能引擎和专家诊断经验,简化异常数据查找,缩短故障响应时间。
阿里云ACK容器服务生产级可观测体系建设实践
|
2月前
|
监控 NoSQL 时序数据库
《docker高级篇(大厂进阶):7.Docker容器监控之CAdvisor+InfluxDB+Granfana》包括:原生命令、是什么、compose容器编排,一套带走
《docker高级篇(大厂进阶):7.Docker容器监控之CAdvisor+InfluxDB+Granfana》包括:原生命令、是什么、compose容器编排,一套带走
299 78
|
2月前
|
数据建模 应用服务中间件 nginx
docker替换宿主与容器的映射端口和文件路径
通过正确配置 Docker 的端口和文件路径映射,可以有效地管理容器化应用程序,确保其高效运行和数据持久性。在生产环境中,动态替换映射配置有助于灵活应对各种需求变化。以上方法和步骤提供了一种可靠且易于操作的方案,帮助您轻松管理 Docker 容器的端口和路径映射。
180 3
|
2月前
|
安全 Java 程序员
Java内存模型的深入理解与实践
本文旨在深入探讨Java内存模型(JMM)的核心概念,包括原子性、可见性和有序性,并通过实例代码分析这些特性在实际编程中的应用。我们将从理论到实践,逐步揭示JMM在多线程编程中的重要性和复杂性,帮助读者构建更加健壮的并发程序。

热门文章

最新文章