数据分析师、数据科学家、大数据专家三个职位的区别

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 版权声明:本文为博主chszs的原创文章,未经博主允许不得转载。 https://blog.csdn.net/chszs/article/details/80658582 数据分析师、数据科学家、大数据专家三个职位的区别2018.6.11版权声明:本文为博主chszs的原创文章,未经博主允许不得转载。
版权声明:本文为博主chszs的原创文章,未经博主允许不得转载。 https://blog.csdn.net/chszs/article/details/80658582

数据分析师、数据科学家、大数据专家三个职位的区别

  • 2018.6.11
  • 版权声明:本文为博主chszs的原创文章,未经博主允许不得转载。

随着数据科学和大数据作为主流职业选择的出现,不少人对相关职位名称的内涵存在一定的混乱,有些人认为大数据等同于数据科学,另外有些人则认为大数据是数据科学的子集。数据科学已经存在了很长一段时间,而大数据则是相当新的,它源于数据科学。

下面是数据分析师,数据科学家和大数据专家之间的一点比较。

数据分析师

1. 定义

使用自动化工具,他们可以获取分离的数据和见解。他们定义数据集并进行广泛的人口统计分析以确定与业务和产品相关的策略。

2. 所需技能

编程,统计学和数学,机器学习,数据可视化和通信技术,数据处理和数据集定义

3. 适用领域

医疗保健,保险,旅游,行政,游戏,分布式系统

数据科学家

1. 定义

获取数据,构建和维护数据库,根据各种需求清理和分离数据,并从事数据可视化和分析工作。

2. 所需技能

SAS/R/类似工具,Python,Hadoop,SQL,重构数据,数据库构建和管理

3. 适用领域

搜索引擎,广告,自适应算法,AI系统

大数据专家

1. 定义

处理连续大量的数据,定义用于分析的参数和数据集,并编制分析系统,为企业提供战略见解。

2. 所需技能

数学和统计学,程序设计和计算机科学,分析技能,商业战略

3. 适用领域

零售,电子商务,金融服务,通信

正如所看到的,数据分析是这些选项中最基本的。数据分析师的工作有更广泛的应用,因此在不同的行业应用更加多样化。即使数据分析师的教育和学术要求也较低。

接下来是大数据工作,这些工作相当复杂,需要高级技能。有时候,大数据认证是获得大数据分析师工作的强制性要求。由于数字技术在各行业的普及,大数据工作的范围日益扩大。

最重要的是数据科学工作。数据科学认证是获得工作的必备条件。数据科学家的范围比大数据要低,这是由于数据科学不同的概况所致。

有了以上信息,数据分析师、数据科学家和大数据专家之间的差异应该清楚。这个信息可以用于在数据分析和商业战略领域制定更好的职业规划。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
6月前
|
存储 数据采集 运维
大数据相关各职位解析
大数据相关各职位解析
76 0
|
3月前
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
84 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
|
8天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
2月前
|
机器学习/深度学习 数据挖掘 大数据
大数据时代的“淘金术”:Python数据分析+深度学习框架实战指南
在大数据时代,数据被视为新财富源泉,而从海量信息中提取价值成为企业竞争的核心。本文通过对比方式探讨如何运用Python数据分析与深度学习框架实现这一目标。Python凭借其强大的数据处理能力及丰富库支持,已成为数据科学家首选工具;而TensorFlow和PyTorch等深度学习框架则为复杂模型构建提供强有力的技术支撑。通过融合Python数据分析与深度学习技术,我们能在各领域中发掘数据的无限潜力。无论是商业分析还是医疗健康,掌握这些技能都将为企业和社会带来巨大价值。
91 6
|
3月前
|
存储 数据可视化 数据挖掘
大数据环境下的房地产数据分析与预测研究的设计与实现
本文介绍了一个基于Python大数据环境下的昆明房地产市场分析与预测系统,通过数据采集、清洗、分析、机器学习建模和数据可视化技术,为房地产行业提供决策支持和市场洞察,探讨了模型的可行性、功能需求、数据库设计及实现过程,并展望了未来研究方向。
164 4
大数据环境下的房地产数据分析与预测研究的设计与实现
|
3月前
|
存储 数据可视化 大数据
基于Python Django的大数据招聘数据分析系统,包括数据大屏和后台管理
本文介绍了一个基于Python Django框架开发的大数据招聘数据分析系统,该系统具备后台管理功能和数据大屏展示,利用大数据技术收集和分析招聘市场趋势,帮助企业和招聘机构提高招聘效率和质量。
154 3
|
3月前
|
机器学习/深度学习 算法 数据挖掘
【2023 年第二届钉钉杯大学生大数据挑战赛初赛】 初赛 A:智能手机用户监测数据分析 问题一Python代码分析
本文提供了2023年第二届钉钉杯大学生大数据挑战赛初赛A题"智能手机用户监测数据分析"的Python代码分析,包括数据预处理、特征工程、聚类分析等步骤,以及如何使用不同聚类算法进行用户行为分析。
71 0
【2023 年第二届钉钉杯大学生大数据挑战赛初赛】 初赛 A:智能手机用户监测数据分析 问题一Python代码分析
|
3月前
|
存储 分布式计算 大数据
惊了!大数据时代来袭,传统数据处理OUT了?创新应用让你眼界大开,看完这篇秒变专家!
【8月更文挑战第6天】在数据爆炸的时代,高效利用大数据成为关键挑战与机遇。传统数据处理手段难以胜任现今海量数据的需求。新兴的大数据技术,如HDFS、NoSQL及MapReduce、Spark等框架,为大规模数据存储与处理提供了高效解决方案。例如,Spark能通过分布式计算极大提升处理速度。这些技术不仅革新了数据处理方式,还在金融、电商等领域催生了风险识别、市场预测及个性化推荐等创新应用。
99 1
|
3月前
|
Java Spring 安全
Spring 框架邂逅 OAuth2:解锁现代应用安全认证的秘密武器,你准备好迎接变革了吗?
【8月更文挑战第31天】现代化应用的安全性至关重要,OAuth2 作为实现认证和授权的标准协议之一,被广泛采用。Spring 框架通过 Spring Security 提供了强大的 OAuth2 支持,简化了集成过程。本文将通过问答形式详细介绍如何在 Spring 应用中集成 OAuth2,包括 OAuth2 的基本概念、集成步骤及资源服务器保护方法。首先,需要在项目中添加 `spring-security-oauth2-client` 和 `spring-security-oauth2-resource-server` 依赖。
52 0
|
3月前
|
消息中间件 数据挖掘 Kafka
揭秘大数据时代的极速王者!Flink:颠覆性流处理引擎,让实时数据分析燃爆你的想象力!
【8月更文挑战第29天】Apache Flink 是一个高性能的分布式流处理框架,适用于高吞吐量和低延迟的实时数据处理。它采用统一执行引擎处理有界和无界数据流,具备精确状态管理和灵活窗口操作等特性。Flink 支持毫秒级处理和广泛生态集成,但学习曲线较陡峭,社区相对较小。通过实时日志分析示例,我们展示了如何利用 Flink 从 Kafka 中读取数据并进行词频统计,体现了其强大功能和灵活性。
72 0