基于Quick BI的用户分布分析

简介: 使用Quick BI的气泡地图功能来分析全国数据用户分布,更好地理解数据并发现其中的异常

Quick BI的气泡地图功能能非常直观得体现全国各区域的数据情况。这里从网上搜了一份某社交网站的用户数据,数据量就五六万条,而且只包含这些用户的公开信息(省的自己还要去爬)。

数据预处理

数据包含的字段为uid、location、gender、followersnum、friendsnum,分别是用户id、所在区域、性别、关注人数、好友人数。里面的location这个字段是中文的,看到为“浙江”这样的就写了省的,也有是“浙江 杭州”这样到省、市的,而且中间用空格分割。另外还有一些写的是“海外”或“其他”。

先用个SQL对数据进行处理,整理出一个所在省的字段

create table wbuser2 AS
select b.*
  from(
select a.uid, a.`location`, a.`gender`, a.`followersnum`, a.`friendsnum`, a.`location` as province_name
  from `wbuser` a
 where instr(a.location, ' ')= 0
 union all
select a.uid, a.`location`, a.`gender`, a.`followersnum`, a.`friendsnum`, substr(a.location, 1, instr(a.location, ' ')) as province_name
  from `wbuser` a
 where instr(a.location, ' ')> 0) b

工作表

数据处理好了后,我们配置数据源,并根据这张表创建一张工作表,刚生成的工作表如图:
a101

然后我们需要对数据进行一些设置:

  • 设置地理位置维度
    a102
  • 修改计量的统计方式。我们不需要计算整个省的所有用户的总的好友数,也是想要平均值。关注也一样
    a103
  • uid我们使用count(uid)来获得每个地区的用户量分布。转化后因为uid是字符串类型,所以默认是count
    a103_2
  • 对于省是“其他”和“海外”的,我们不统计
    a104

a104_2

  • 最后查询数据并保存。a104_3

仪表盘

最后我们创建一个仪表盘,格式为气泡地图,数据来自工作表
a105

本来所有的工作都已经完成了,但是看一下followersnum,发现台湾的数据怎么特别大,导致其他地区全是蓝点了。
a107

于是我们查一下数据,看看是怎么样的

select a.`province_name`,
       avg(a.`followersnum`) as followersnum
  from `wbuser2` a
 group by a.`province_name`
 order by followersnum desc;

看到台湾的数据特别大,除了台湾外,香港和北京也比较大。
a108
所以我们修改了图标的值域
a109
最后结果如下
a110

通过数据可视化,我们能更容易地发现数据中的一些异常和规律(比如台湾的followersnum特别大)至此大功告成!

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
5月前
|
BI 数据安全/隐私保护
Dataphin功能Tips系列(69)数据资产如何快捷对接Qucik BI进行分析消费
QuickBI与Dataphin集成,实现数据权限统一管理,简化用户从权限申请到仪表板创建的流程,提升数据消费效率,保障数据安全,加速数据价值转化。
219 8
|
7月前
|
SQL 存储 人工智能
Quick BI V5.5上线:AI赋能全场景提效,分析决策 “快、准、稳”!
Quick BI 5.5版本应运而生,围绕"AI赋能+全场景提效",助力企业加速释放数据价值。此次升级,不仅让复杂分析"开箱即用",更通过智能工具与场景化能力,助力企业实现从数据洞察到决策落地的全流程闭环。
Quick BI V5.5上线:AI赋能全场景提效,分析决策 “快、准、稳”!
|
SQL 缓存 分布式计算
阿里云连续五年入选Gartner®分析和商业智能平台魔力象限,中国唯一
Gartner® 正式发布《分析与商业智能平台魔力象限》报告(Magic Quadrant™ for Analytics and Business Intelligence Platforms),阿里云成为唯一入围该报告的中国厂商,被评为“挑战者”(Challengers)。这也是阿里云连续五年入选该报告。
|
10月前
|
人工智能 自然语言处理 数据可视化
大模型+BI:一场关乎企业未来生死的数据智能卡位战 | 【瓴羊数据荟】数据MeetUp第四期
随着大模型技术突破,全球企业迎来数据智能革命。Gartner预测,到2027年,中国80%的企业将采用多模型生成式AI策略。然而,数据孤岛与高门槛仍阻碍价值释放。
487 8
大模型+BI:一场关乎企业未来生死的数据智能卡位战 | 【瓴羊数据荟】数据MeetUp第四期
|
10月前
|
数据可视化 数据挖掘 BI
Quick BI 深度体验:数据洞察,触手可及——打造智能零售分析利器
作为一名数据分析师,我深度体验了阿里云Quick BI。这是一款功能强大的全场景BI平台,支持多数据源接入与智能分析,操作简单且智能化程度高。通过上传Excel文件即可快速生成数据集,并利用丰富图表进行可视化分析。其“智能小Q助手”可对话式查询数据、自动生成报表,极大降低分析门槛。尽管新手引导和移动端体验尚有优化空间,但Quick BI无疑是企业实现数据驱动决策的有力工具。强烈推荐给希望提升业务竞争力的企业!
|
11月前
|
人工智能 数据可视化 搜索推荐
云市场伙伴动态 | 分析和商业智能平台领导者Tableau
云市场伙伴动态 | 分析和商业智能平台领导者Tableau
|
机器学习/深度学习 算法 数据挖掘
如何利用 BI 工具分析客户流失原因?
如何利用 BI 工具分析客户流失原因?
443 10
|
人工智能 供应链 搜索推荐
大数据分析:解锁商业智能的秘密武器
【10月更文挑战第31天】在信息爆炸时代,大数据分析成为企业解锁商业智能的关键工具。本文探讨了大数据分析在客户洞察、风险管理、供应链优化、产品开发和决策支持等方面的应用,强调了明确分析目标、选择合适工具、培养专业人才和持续优化的重要性,并展望了未来的发展趋势。
|
缓存 DataWorks 数据可视化
DataWorks 数据服务 + BI 可视化分析报表 (搭建战报)
DataWorks 数据服务提供强大的数据 API 能力,并能与多种业界流行的 BI 报表 (DataV、QuickBI、PowerBI和Grafana) 结合,使用 API 数据源的好处是统一数据接口、统一权限管理、统一数据交换以及数据服务提供强大的各式各样的插件能力 (如缓存插件、流量控制插件、日志脱敏插件、断路器插件、IP访问控制插件、三方鉴权插件等),下文介绍各热门 BI 工具接入 DataWorks 数据服务的操作方式。
749 0
DataWorks 数据服务 + BI 可视化分析报表 (搭建战报)
|
9月前
|
SQL 数据可视化 BI
Quick BI产品测评:从数据连接到智能分析的全流程体验
瓴羊智能商业分析-Quick BI是阿里云旗下的云端智能BI平台,连续五年入选Gartner ABI魔力象限。它提供从数据接入到决策的全链路服务,支持零代码操作、40+可视化组件与OLAP分析,实现跨终端呈现。其创新点包括云原生架构、企业级安全体系及智能决策引擎,适用于零售、金融等行业。评测中,通过免费试用与官方文档,体验了数据准备、仪表板搭建及智能小Q功能,发现智能化能力强大但部分文档需更新优化。
914 67