Ubuntu18.04安装Tensorflow-gpu

简介: 写篇blog记录一下配置tensorflow-gpu开发环境环境版本系统:Ubuntu 18.04 LTSGPU:GeForce GTX 1050 MobileCuda: 9.

写篇blog记录一下配置tensorflow-gpu开发环境

环境版本

系统:Ubuntu 18.04 LTS
GPU:GeForce GTX 1050 Mobile
Cuda: 9.0
Cudnn: 7.0.5
Tensorflow-gpu:1.8.0
Python:python3.6.5


安装Cuda Toolkit 9.0

Cuda Toolkit 9.0下载链接

img_7c3f9e52c3b2bc4c93ef8bbe516c25e5.png
我的选择

另外,下面的两个Patch 我都有下载,都是用dpkg装的
去到你下载好的三个deb的文件夹中,在终端执行下面的语句:

sudo apt-key add /var/cuda-repo-9-0-local-cublas-performance-update-2/7fa2af80.pub
sudo dpkg -i cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu1604-9-0-local-cublas-performance-update_1.0-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu1604-9-0-local-cublas-performance-update-2_1.0-1_amd64.deb
sudo apt-get update
sudo apt-get install cuda-9.0

安装完成后,声明一下环境变量

sudo vim ~/.bashrc

在文件的最后加上环境变量

export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}}  
export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

profile里也加上声明

sudo vim /etc/profile

重新执行刚刚修改的初始化文档

source ~/.bashrc
source /etc/profile

验证一下CUDA版本:9.0

nvcc --version

安装cudnn 7.0.5

cudnn 7.0.5
在官网下载 cuDNN v7.0.5 (Dec 5, 2017), for CUDA 9.0 下载三个文件ubuntu16.04文件 runtime library. developer library, and code samples and user guide

sudo dpkg -i libcudnn7_7.0.5.11-1+cuda9.0_amd64.deb
sudo dpkg -i libcudnn7-dev_7.0.5.11-1+cuda9.0_amd64.deb
sudo dpkg -i libcudnn7-doc_7.0.5.11-1+cuda9.0_amd64.deb

在检验cuDNN之前,先安装freeimage library作为ministCUDNN示例代码的依赖关系。

sudo apt-get install libfreeimage3 libfreeimage-dev

开始检验cuDNN啦!

cp -r /usr/src/cudnn_samples_v7/ $HOME
cd $HOME/cudnn_samples_v7/mnistCUDNN
sudo make clean && sudo make
./mnistCUDNN

安装成功的话,终端会如下显示:


img_a8dcf39e64e55298893b4f1c36c62084.png
代码运行效果图

安装Tensorflow-gpu

终于开始进入主题了!
Python 3.n用pip3安装

sudo pip3 install tensorflow-gpu==1.8.0

run个小sample,测试一下

#Python 3
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))

和官方给的运行结果不一样,输出的是byte string。


img_8b171e7e071e9184bf36ff5885d786f2.png
运行结果

以上,
完结撒花!

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
4月前
|
并行计算 TensorFlow 算法框架/工具
tensorflow安装
tensorflow安装——GPU版
83 2
|
4月前
|
并行计算 PyTorch TensorFlow
Ubuntu安装笔记(一):安装显卡驱动、cuda/cudnn、Anaconda、Pytorch、Tensorflow、Opencv、Visdom、FFMPEG、卸载一些不必要的预装软件
这篇文章是关于如何在Ubuntu操作系统上安装显卡驱动、CUDA、CUDNN、Anaconda、PyTorch、TensorFlow、OpenCV、FFMPEG以及卸载不必要的预装软件的详细指南。
6542 3
|
4月前
|
PyTorch TensorFlow 算法框架/工具
Jetson环境安装(一):Ubuntu18.04安装pytorch、opencv、onnx、tensorflow、setuptools、pycuda....
本文提供了在Ubuntu 18.04操作系统的NVIDIA Jetson平台上安装深度学习和计算机视觉相关库的详细步骤,包括PyTorch、OpenCV、ONNX、TensorFlow等。
256 1
Jetson环境安装(一):Ubuntu18.04安装pytorch、opencv、onnx、tensorflow、setuptools、pycuda....
|
4月前
|
并行计算 PyTorch TensorFlow
环境安装(一):Anaconda3+pytorch1.6.0+cuda10.0+cudnn7.6.4+tensorflow1.15+pycocotools+pydensecrf
这篇文章详细介绍了如何在Anaconda环境下安装和配置深度学习所需的库和工具,包括PyTorch 1.6.0、CUDA 10.0、cuDNN 7.6.4、TensorFlow 1.15、pycocotools和pydensecrf,并提供了pip国内镜像源信息以及Jupyter Notebook和Anaconda的基本操作。
473 0
环境安装(一):Anaconda3+pytorch1.6.0+cuda10.0+cudnn7.6.4+tensorflow1.15+pycocotools+pydensecrf
|
6月前
|
并行计算 TensorFlow 算法框架/工具
Window安装TensorFlow-GPU版本
Window安装TensorFlow-GPU版本
108 0
|
6月前
|
并行计算 TensorFlow 算法框架/工具
Windows11+CUDA12.0+RTX4090如何配置安装Tensorflow2-GPU环境?
本文介绍了如何在Windows 11操作系统上,配合CUDA 12.0和RTX4090显卡,通过创建conda环境、安装特定版本的CUDA、cuDNN和TensorFlow 2.10来配置TensorFlow GPU环境,并提供了解决可能遇到的cudnn库文件找不到错误的具体步骤。
852 3
|
6月前
|
TensorFlow 算法框架/工具 Python
【Mac 系统】解决VSCode用Conda成功安装TensorFlow但程序报错显示红色波浪线Unable to import ‘tensorflow‘ pylint(import-error)
本文解决在Mac系统上使用VSCode时遇到的TensorFlow无法导入问题,原因是Python解析器未正确设置为Conda环境下的版本。通过在VSCode左下角选择正确的Python解析器,即可解决import TensorFlow时报错和显示红色波浪线的问题。
245 9
|
4天前
|
机器学习/深度学习 存储 弹性计算
阿里云gpu云服务器租用价格:最新收费标准及活动价格参考
阿里云gpu云服务器多少钱?A10卡GN7i GPU云服务器32核188G3213.99/1个月起,V100卡GN6v GPU云服务器8核32G3830.00/1个月起,阿里云GPU云服务器是基于GPU应用的计算服务,多适用于视频解码,图形渲染,深度学习,科学计算等应用场景,该产品具有超强计算能力、网络性能出色、购买方式灵活、高性能实例存储( GA1和GN5特有)等特点。下面小编来介绍下阿里云gpu云服务器最新的收费标准及活动价格。
|
4天前
|
存储 机器学习/深度学习 人工智能
2025年阿里云GPU服务器租用价格、选型策略与应用场景详解
随着AI与高性能计算需求的增长,阿里云提供了多种GPU实例,如NVIDIA V100、A10、T4等,适配不同场景。2025年重点实例中,V100实例GN6v单月3830元起,适合大规模训练;A10实例GN7i单月3213.99元起,适用于混合负载。计费模式有按量付费和包年包月,后者成本更低。针对AI训练、图形渲染及轻量级推理等场景,推荐不同配置以优化成本和性能。阿里云还提供抢占式实例、ESSD云盘等资源优化策略,支持eRDMA网络加速和倚天ARM架构,助力企业在2025年实现智能计算的效率与成本最优平衡。 (该简介为原文内容的高度概括,符合要求的字符限制。)
|
4天前
|
机器学习/深度学习 存储 人工智能
2025年阿里云GPU服务器的租赁价格与选型指南
随着AI、深度学习等领域的发展,GPU服务器成为企业及科研机构的核心算力选择。阿里云提供多种GPU实例类型(如NVIDIA V100、A100等),涵盖计算型、共享型和弹性裸金属等,满足不同场景需求。本文详解2025年阿里云GPU服务器的核心配置、价格策略及适用场景,帮助用户优化选型与成本控制,实现高效智能计算。

热门文章

最新文章