Ubuntu18.04安装Tensorflow-gpu

简介: 写篇blog记录一下配置tensorflow-gpu开发环境环境版本系统:Ubuntu 18.04 LTSGPU:GeForce GTX 1050 MobileCuda: 9.

写篇blog记录一下配置tensorflow-gpu开发环境

环境版本

系统:Ubuntu 18.04 LTS
GPU:GeForce GTX 1050 Mobile
Cuda: 9.0
Cudnn: 7.0.5
Tensorflow-gpu:1.8.0
Python:python3.6.5


安装Cuda Toolkit 9.0

Cuda Toolkit 9.0下载链接

img_7c3f9e52c3b2bc4c93ef8bbe516c25e5.png
我的选择

另外,下面的两个Patch 我都有下载,都是用dpkg装的
去到你下载好的三个deb的文件夹中,在终端执行下面的语句:

sudo apt-key add /var/cuda-repo-9-0-local-cublas-performance-update-2/7fa2af80.pub
sudo dpkg -i cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu1604-9-0-local-cublas-performance-update_1.0-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu1604-9-0-local-cublas-performance-update-2_1.0-1_amd64.deb
sudo apt-get update
sudo apt-get install cuda-9.0

安装完成后,声明一下环境变量

sudo vim ~/.bashrc

在文件的最后加上环境变量

export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}}  
export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

profile里也加上声明

sudo vim /etc/profile

重新执行刚刚修改的初始化文档

source ~/.bashrc
source /etc/profile

验证一下CUDA版本:9.0

nvcc --version

安装cudnn 7.0.5

cudnn 7.0.5
在官网下载 cuDNN v7.0.5 (Dec 5, 2017), for CUDA 9.0 下载三个文件ubuntu16.04文件 runtime library. developer library, and code samples and user guide

sudo dpkg -i libcudnn7_7.0.5.11-1+cuda9.0_amd64.deb
sudo dpkg -i libcudnn7-dev_7.0.5.11-1+cuda9.0_amd64.deb
sudo dpkg -i libcudnn7-doc_7.0.5.11-1+cuda9.0_amd64.deb

在检验cuDNN之前,先安装freeimage library作为ministCUDNN示例代码的依赖关系。

sudo apt-get install libfreeimage3 libfreeimage-dev

开始检验cuDNN啦!

cp -r /usr/src/cudnn_samples_v7/ $HOME
cd $HOME/cudnn_samples_v7/mnistCUDNN
sudo make clean && sudo make
./mnistCUDNN

安装成功的话,终端会如下显示:


img_a8dcf39e64e55298893b4f1c36c62084.png
代码运行效果图

安装Tensorflow-gpu

终于开始进入主题了!
Python 3.n用pip3安装

sudo pip3 install tensorflow-gpu==1.8.0

run个小sample,测试一下

#Python 3
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))

和官方给的运行结果不一样,输出的是byte string。


img_8b171e7e071e9184bf36ff5885d786f2.png
运行结果

以上,
完结撒花!

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
6天前
|
Ubuntu API 网络虚拟化
ubuntu22 编译安装docker,和docker容器方式安装 deepseek
本脚本适用于Ubuntu 22.04,主要功能包括编译安装Docker和安装DeepSeek模型。首先通过Apt源配置安装Docker,确保网络稳定(建议使用VPN)。接着下载并配置Docker二进制文件,创建Docker用户组并设置守护进程。随后拉取Debian 12镜像,安装系统必备工具,配置Ollama模型管理器,并最终部署和运行DeepSeek模型,提供API接口进行交互测试。
131 15
|
27天前
|
弹性计算 Ubuntu Java
OS-Copilot-ubuntu镜像版本的具体测试使用(安装方式有单独注明)
作为一名个人开发者,我主要负责云资源的运维和管理。在使用OS Copilot的过程中,我遇到了一些配置问题,特别是在ECS实例中设置AccessKey时,但最终成功解决了。通过使用OS Copilot的-t/-f/管道功能,我大大提升了效率,减少了命令编写的工作量,特别是在搭建Java运行环境时效果显著。此外,| 功能帮助我快速理解文档,整体体验非常流畅,推荐给其他开发者使用。
39 6
|
2月前
|
JSON Ubuntu 开发者
ubuntu 22安装lua环境&&编译lua cjson模块
通过上述步骤,可以在 Ubuntu 22.04 系统上成功安装 Lua 环境,并使用 LuaRocks 或手动编译的方式安装 lua-cjson 模块。本文详细介绍了每一步的命令和操作,确保每一步都能顺利完成,适合需要在 Ubuntu 系统上配置 Lua 开发环境的开发者参考和使用。
191 13
|
2月前
|
监控 关系型数据库 MySQL
Ubuntu24.04安装Librenms
此指南介绍了在Linux系统上安装和配置LibreNMS网络监控系统的步骤。主要内容包括:安装所需软件包、创建用户、克隆LibreNMS仓库、设置文件权限、安装PHP依赖、配置时区、设置MariaDB数据库、调整PHP-FPM与Nginx配置、配置SNMP及防火墙、启用命令补全、设置Cron任务和日志配置,最后通过网页完成安装。整个过程确保LibreNMS能稳定运行并提供有效的网络监控功能。
|
3月前
|
Ubuntu 开发工具 git
Ubuntu安装homebrew的完整教程
本文介绍了如何在没有公网的情况下安装 Homebrew。首先访问 Homebrew 官网,然后通过阿里云的镜像克隆安装脚本,并创建普通用户进行安装。接着修改 `install.sh` 文件指向国内镜像,执行安装命令。最后配置环境变量并更换 Homebrew 源为国内镜像,确保安装顺利。
730 50
|
2月前
|
Ubuntu Linux Docker
Ubuntu22.04上Docker的安装
通过以上详细的安装步骤和命令,您可以在Ubuntu 22.04系统上顺利安装
1302 12
|
3月前
|
Ubuntu
ubuntu和debian 的安装包dpkg管理命令对安装包进行安装,查询,卸载
Ubuntu dpkg 软件包管理命令概览:安装、卸载、查看和配置软件包。包括解决依赖、强制卸载、列出及过滤已安装包、查看包详情等操作。
130 10
|
3月前
|
Ubuntu API 开发工具
PSOPT在Ubuntu22.04下的安装
通过上述步骤,可以在Ubuntu 22.04下成功安装并配置PSOPT。PSOPT是一个功能强大的工具,适用于解决各种最优控制问题。确保在安装前满足系统要求,并仔细按照步骤操作,可以避免大多数常见问题。通过MATLAB与PSOPT的结合,您可以更高效地处理复杂的控制问题,并获得准确的解决方案。
51 5
|
3月前
|
Ubuntu 网络协议 关系型数据库
超聚变服务器2288H V6使用 iBMC 安装 Ubuntu Server 24.04 LTS及后续系统配置
【11月更文挑战第15天】本文档详细介绍了如何使用iBMC在超聚变服务器2288H V6上安装Ubuntu Server 24.04 LTS,包括连接iBMC管理口、登录iBMC管理界面、配置RAID、安装系统以及后续系统配置等步骤。
486 4
|
3月前
|
消息中间件 Ubuntu Java
Ubuntu系统上安装Apache Kafka
Ubuntu系统上安装Apache Kafka

热门文章

最新文章