神经网络

简介: 神经网络案例摘要在Compute Vision(计算机视觉)中,我们输入的是一张一张的图片,但是在计算机看来,每一张图片都是由一个一个像素点组成的,那么,什么是我们的输入样本X,什么又是我们的标签y?在图像识别中,一张图片所有像素点就是一个样本,也就是矩阵X中的一行,y就是对这个图片判断的结果。

神经网络案例

摘要

  • 在Compute Vision(计算机视觉)中,我们输入的是一张一张的图片,但是在计算机看来,每一张图片都是由一个一个像素点组成的,那么,什么是我们的输入样本X,什么又是我们的标签y?在图像识别中,一张图片所有像素点就是一个样本,也就是矩阵X中的一行,y就是对这个图片判断的结果。可想而知,就算是一张50x50的图片,它的特征也有2500之多,如果他是RGB图片,那就是7500个特征,那么特征的值是什么?就是图片的亮度(intensity),它的是在0-255之间。在图像识别中,我们会将像素矩阵unrolled成为一个向量,将这个向量作为一个训练集。如果要可视化图片,需要将其在转换为矩阵。
  • activation function(激活函数),其实它就是在机器学习领域中的sigmoid(logistic)函数,这是在神经网络中换了一个名字罢了。
  • 在深度学习中,我们会遇到比较复杂的\(J(\theta)\)目标函数(cost function), 一般情况下,使用梯度下降的方法来计算\(J(\theta)\)目标函数的最小值,有下面这个梯度下降公式\[\theta := \theta - {{\partial}\over{\partial{\theta}}}J(\theta)\]其实\({{\partial}\over{\partial{\theta}}}J(\theta)\)是梯度,梯度下降公式的关键点就是计算出梯度,在线性回归和逻辑回归这些简单的模型中的目标函数的梯度是好求的,可以直接带入偏导的公式,但是在深度学习中比较复杂,求梯度需要回归到最原始的求法,使用定义法进行求导,不过这样的计算量非常的大,于是后来就诞生了反向传播算法(backpropagation algorithm),这个算法大量地使用了链式求导法则。大致上是下面的公式(如果实现了反向传播算法,要通过梯度检测,之后再投入到训练中,因为反向传播算法比较的复杂,实现起来可以会有bug)
    • 假设我们现在有4个layer,输出层是一个节点(这是一个单分类的问题)
    • \(\delta^{(4)}=(a^{(4)}-y)\)
    • \(\delta^{(3)}=({\theta^{(3)}})^{T}{\delta}^{(4)} \times g(z^{(3)})\), 其中\(\delta^{(3)}\), \(z^{(3)}\)等都是向量或者矩阵,建议在数学公式推导的时候使用实数,在推导结束时候,放到matlab等应用的时候将其转为向量或者矩阵表示。
    • \(\delta^{(2)} = ({\theta^{(2)}})^{T}{\delta}^{(3)} \times g(z^{(2)})\)
    • 第一层是不需要计算误差的,因为它是我们原始的输入层。
    • 上述式子中的\(g(z^{(3)})\)等于sigmoid(\(z^{(3)}\))(sigmoid(\(z^{(3)} - 1\)))
  • 梯度检测(gradient checking)
    • 在上面我们已经知道了,在使用了反向传播算法计算出误差值(error),为了防止使用反向传播高级算法出现bug,需要使用正规的求导的方法来检测反向传播算法是否出现了bug,只要gradApprox \(\approx\) DVec则表示没有bug,对于如何实现梯度检测,只需要构建一个小型的神经网络,接着生成一些数据X和标签y分别输入到反向传播函数和一般计算梯度的函数中,最后将结果进行比较即可
  • 在神经网络中会有非常多的参数,为这些参数赋予初始值是非常重要的,于是就产生了随机初始化的方法(random initialize), 一个参数表示为\(\theta_{ji}^{(l)}\),随机初始化的目的就是将\(\epsilon\)的初始值在\(-\epsilon\)\(\delta\)之间
  • 在进行反向传播的时候,计算出来的error item \(\delta\) 的个数与参数的个数一样的,因为error item与每一个与之对应的参数密切相关,我们要通过error item计算出参数的梯度theta_grad,当所有的训练样本都输入进去并参与到了error item的运算中去的时候,得到的theta_grad与参数是同维度的,由此可以推断出,error item 也是与参数同维度的,这里将error item \(\approx {{\partial}\over{\partial{\theta}}}J(\theta)\)$,这样就计算出了梯度,接下来就可以更新参数了
  • 我们知道在神经网络中我们的参数\(\theta\)成为了多个矩阵,返回的梯度也成为多个矩阵,这与我们之前学习的线性回归和逻辑回归不同,他们的是一个列向量,上面提到的是在一次迭代中,因此为了统一和方便编程,将几个矩阵全部unrolled成为一个列向量

规定

  • L: 表示layer的个数
  • \(a_{i}^{(j)}\): 表示第j层layer的第i个单元(unit)
  • \(s_{j}\): 表示第j层layer的单元的个数
  • \(\Theta^{(j)}\): 表示第j层layer的权重矩阵

代码

  • costFunction

% 将y标签的值转为[0 0 0 0 1 0 0 0 0 0 ...]的形式
% 使用for循环迭代每一个样本
% 注意,显示的情况就是参数都已经有了,在一个for循环中,输入的是一个样本
tmp = (1:num_labels)';
for i = 1:m
   % 将其中的一个样本的标签转化为[0 0 0 0 0 1 ... 0 0]形式
   % 神经网络的前向传播
   y_new = y(i) == tmp;
   x = [1 X(i, :)];
   z_2 = Theta1 * x';
   a_2 = sigmoid(z_2); % 25x1 demensions
   z_3 = Theta2 * [1, a_2']';
   a_3 = sigmoid(z_3);
   % 计算损失函数
   J = J + sum(-y_new .* log(a_3) - (1 - y_new) .* log(1 - a_3));
   
   % 神经网络的后向传播
   delta_3 = a_3 - y_new;
   delta_2 = Theta2' * delta_3 .* [1; sigmoidGradient(z_2)];
   delta_2 = delta_2(2:end);
   Theta1_grad = Theta1_grad + delta_2 * x;
   Theta2_grad = Theta2_grad + delta_3 * [1 a_2'];
   
end
J = 1 / m * J;
J = J + lambda / (2 * m) * (sum(sum(Theta1 .^ 2)) + sum(sum(Theta2 .^ 2)));
% =========================================================================
Theta1_grad = Theta1_grad / m + lambda / m * Theta1;
Theta1_grad(:, 1) = Theta1_grad(:, 1) - lambda /m * Theta1(:, 1);

Theta2_grad = Theta2_grad / m + lambda / m * Theta2;
Theta2_grad(:, 1) = Theta2_grad(:, 1) - lambda / m * Theta2(:, 2);
% Unroll gradients
grad = [Theta1_grad(:) ; Theta2_grad(:)];

end
  • randomInitWeights
% You need to return the following variables correctly 
W = zeros(L_out, 1 + L_in);

% ====================== YOUR CODE HERE ======================
% Instructions: Initialize W randomly so that we break the symmetry while
%               training the neural network.
%
% Note: The first column of W corresponds to the parameters for the bias unit
%
epsilon_init = 0.12;
W = rand(L_out, L_in + 1) * 2 * epsilon_init - epsilon_init; 

% =========================================================================
目录
相关文章
|
机器学习/深度学习 网络架构
神经网络4
与单层神经网络不同。理论证明,两层神经网络可以无限逼近任意连续函数。 这是什么意思呢?也就是说,面对复杂的非线性分类任务,两层(带一个隐藏层)神经网络可以分类的很好。 下面就是一个例子(此两图来自colah的博客),红色的线与蓝色的线代表数据。而红色区域和蓝色区域代表由神经网络划开的区域,两者的分界线就是决策分界。 可以看到,这个两层神经网络的决策分界是非常平滑的曲线,而且分类的很好。有趣的是,前面已经学到过,单层网络只能做线性分类任务。而两层神经网络中的后一层也是线性分类层,应该只能做线性分类任务。为什么两个线性分类任务结合就可以做非线性分类任务? 我们可以把输出层的决策分界单独拿出来看一下
77 0
|
3月前
|
机器学习/深度学习 自动驾驶 搜索推荐
深度学习之探索神经网络、感知器与损失函数
在当今的数字化时代,深度学习作为一种强大的机器学习技术,正在迅速改变着我们的生活方式。无论是智能推荐系统、自动驾驶车辆还是语音识别应用,深度学习都在背后默默地发挥作用。
60 1
|
6月前
|
机器学习/深度学习 存储 算法
简单的神经网络
softmax激活函数将多个未归一化的值转换为概率分布,常用于多分类问题。交叉熵损失函数,特别是与softmax结合时,是评估分类模型性能的关键,尤其适用于多分类任务。它衡量模型预测概率与实际标签之间的差异。在PyTorch中,`nn.CrossEntropyLoss`函数结合了LogSoftmax和负对数似然损失,用于计算损失并进行反向传播。通过`loss.backward()`,模型参数的梯度被计算出来,然后用优化器如`SGD`更新这些参数以减小损失。
|
6月前
|
机器学习/深度学习
什么是神经网络?
神经网络是一种深度学习方法,源自人类大脑生物神经网络的概念。它由大量相互连接的人工神经元(也称为节点或单元)组成,每个神经元接收输入,进行简单处理后生成输出,并将结果传递给下一层的神经元。
108 2
|
6月前
|
机器学习/深度学习 算法 数据可视化
感知机和神经网络
**神经网络**是模仿生物神经元结构的数学模型,用于处理复杂关系和模式识别。它由输入层、隐藏层(可能多层)和输出层组成,其中隐藏层负责信息处理。随着层数增加(深度学习),网络能处理更多信息。基本模型包括感知机,仅输入和输出层,用于线性划分;而**BP神经网络**有多个隐藏层,通过反向传播和梯度下降优化参数,避免局部最小值。训练过程中,神经元通过激励函数响应并调整权重,以提高预测准确性。
|
6月前
|
机器学习/深度学习 算法 PyTorch
神经网络反向传播算法
神经网络中的反向传播算法是用于训练的关键步骤,通过计算损失函数梯度更新权重。它始于前向传播,即输入数据通过网络得出预测输出,接着计算预测与实际值的误差。反向传播利用链式法则从输出层开始逐层计算误差,更新每一层的权重和偏置。例如,一个包含隐藏层的网络,初始权重随机设定,通过反向传播计算损失函数梯度,如sigmoid激活函数的网络,调整权重以减小预测误差。在Python的PyTorch框架中,可以使用`nn.Linear`定义层,`optimizer`进行参数优化,通过`backward()`计算梯度,`step()`更新参数。
|
6月前
|
机器学习/深度学习 算法 语音技术
神经网络
【6月更文挑战第14天】神经网络。
51 3
|
机器学习/深度学习 算法 自动驾驶
神经网络5
4.训练 下面简单介绍一下两层神经网络的训练。 在Rosenblat提出的感知器模型中,模型中的参数可以被训练,但是使用的方法较为简单,并没有使用目前机器学习中通用的方法,这导致其扩展性与适用性非常有限。从两层神经网络开始,神经网络的研究人员开始使用机器学习相关的技术进行神经网络的训练。例如用大量的数据(1000-10000左右),使用算法进行优化等等,从而使得模型训练可以获得性能与数据利用上的双重优势。 机器学习模型训练的目的,就是使得参数尽可能的与真实的模型逼近。具体做法是这样的。首先给所有参数赋上随机值。我们使用这些随机生成的参数值,来预测训练数据中的样本。样本的预测目标为yp,真实目标
87 0
|
机器学习/深度学习 自然语言处理 算法
简单了解神经网络
神经网络是一种强大的机器学习算法,具有很广泛的应用,可以用于图像识别、语音识别、自然语言处理、推荐系统等多个领域。
104 0
|
机器学习/深度学习 算法
连载|神经网络(下)
连载|神经网络(下)

相关实验场景

更多
下一篇
DataWorks