mahout运行测试与数据挖掘算法之聚类分析(一)kmeans算法解析

简介: 版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq1010885678/article/details/44984327 在...
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq1010885678/article/details/44984327

在使用mahout之前要安装并启动hadoop集群

将mahout的包上传至linux中并解压即可

mahout下载地址:

点击打开链接


mahout中的算法大致可以分为三大类:

聚类,协同过滤和分类

其中

常用聚类算法有:canopy聚类,k均值算法(kmeans),模糊k均值,层次聚类,LDA聚类等

常用分类算法有:贝叶斯,逻辑回归,支持向量机,感知器,神经网络等


下面将运行mahout中自带的example例子jar包来查看mahou是否能正确运行

练习数据下载地址:

点击打开链接

上面的练习数据是用来检测kmeans聚类算法的数据

使用hadoop命令运行mahout的例子程序(确保hadoop集群已开启)

在例子代码中写死了输入的路径是/user/hadoop/testdata

将练习数据上传到hdfs中对应的testdata目录下即可

写死的输出路径是/user/hadoop/output

执行命令:

hadoop jar ~/mahout/mahout-examples-0.9-job.jar org.apache.mahout.clustering.syntheticcontrol.kmeans.Job

开始执行任务


由于聚类算法是一种迭代的过程(之后会讲解)

所欲他会一直重复的执行mr任务到符合要求(这其中的过程可能有点久。。。)

运行结果如下:


mahout无异常

执行完这个kmeans算法之后产生的文件按普通方式是查看不了的,看到的只是一堆莫名其妙的数据

需要用mahout的seqdumper命令来下载到本地linux上才能查看正常结果

查看聚类分析的结果:

./mahout seqdumper -s /user/hadoop/output/data/part-m-0000 /home/hadoop/res

之后使用cat命令即可查看

cat res | more


现在来说说什么是kmeans聚类算法

所谓聚类算法就是将一份数据,按照我们想要的或者这份数据中的规律来将数据分类的算法

例如:

现有一份杂乱的样本数据,我们希望数据最后按照某些类别来划分(红豆分为红豆,绿豆分为绿豆等意思)

聚类算法会从n个类的初始中心开始(如果没有人为设置,其会按照随机的初始中心开始)

什么意思呢?来看一张图


上图中,左一的圆圈表示原始数据在随机的初始中心划分后的的分布

但是可以看出很明显cluster1中有很多是靠近cluster2的数据点

所以kmeans会根据规则再次计算出更加合适的中心点来进行划分

这个规则就是:

计算每个数据点,到原始中心cluster1和cluster2的距离

离谁比较近就划分到谁那边去(形如中间的圆圈)

然后将cluster1和cluster2中的数据分别求平均值,得到的两个平均值成为新的cluster1和cluster2中心点

但是很明显这样划分还是不够合理

所以kmeans会继续迭代计算每个数据到新的中心点的距离

离谁比较近就划分给谁

然后在分别求平均值得到新的中心点

直到cluster1和cluster2中的数据平均值不在发生变化时认为此时是最理想的划分方式(也可以进行人工的干预)


该算法的最大优势在于简介快速。算法的关键在于初始中心的选择和计算距离的公式


最后在调用一个mahout的一个算法来测试mahout

调用fpg算法(实现计数频繁项集的算法)

测试数据下载(电商购物车数据)

点击打开链接

在mahout的bin目录下

./mahout fpg -i /user/hadoop/testdata/tail.txt -o /user/hadoop/output -method mapreduce -s 1000 -regex '[]'

各个参数的意义:

-i:指定输入数据的路径

-o:指定输出结果的路径

-method:指定使用mapreduce方法

-s:最小支持度

-regex:使用指定的正则来匹配过滤数据


同样的,运行结果的数据要通过seqdumper来查看

相关文章
|
3月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
4月前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
1285 7
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
4月前
|
机器学习/深度学习 存储 算法
动态规划算法深度解析:0-1背包问题
0-1背包问题是经典的组合优化问题,目标是在给定物品重量和价值及背包容量限制下,选取物品使得总价值最大化且每个物品仅能被选一次。该问题通常采用动态规划方法解决,通过构建二维状态表dp[i][j]记录前i个物品在容量j时的最大价值,利用状态转移方程避免重复计算子问题,从而高效求解最优解。
642 1
|
4月前
|
算法 搜索推荐 Java
贪心算法:部分背包问题深度解析
该Java代码基于贪心算法求解分数背包问题,通过按单位价值降序排序,优先装入高价值物品,并支持部分装入。核心包括冒泡排序优化、分阶段装入策略及精度控制,体现贪心选择性质,适用于可分割资源的最优化场景。
386 1
贪心算法:部分背包问题深度解析
|
4月前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用
|
4月前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
机器学习/深度学习 算法 自动驾驶
965 0
|
4月前
|
机器学习/深度学习 人工智能 资源调度
大语言模型的核心算法——简要解析
大语言模型的核心算法基于Transformer架构,以自注意力机制为核心,通过Q、K、V矩阵动态捕捉序列内部关系。多头注意力增强模型表达能力,位置编码(如RoPE)解决顺序信息问题。Flash Attention优化计算效率,GQA平衡性能与资源消耗。训练上,DPO替代RLHF提升效率,MoE架构实现参数扩展,Constitutional AI实现自监督对齐。整体技术推动模型在长序列、低资源下的性能突破。
598 8
|
4月前
|
算法 API 数据安全/隐私保护
深度解析京东图片搜索API:从图像识别到商品匹配的算法实践
京东图片搜索API基于图像识别技术,支持通过上传图片或图片URL搜索相似商品,提供智能匹配、结果筛选、分页查询等功能。适用于比价、竞品分析、推荐系统等场景。支持Python等开发语言,提供详细请求示例与文档。
|
6月前
|
机器学习/深度学习 人工智能 编解码
AI视觉新突破:多角度理解3D世界的算法原理全解析
多视角条件扩散算法通过多张图片输入生成高质量3D模型,克服了单图建模背面细节缺失的问题。该技术模拟人类多角度观察方式,结合跨视图注意力机制与一致性损失优化,大幅提升几何精度与纹理保真度,成为AI 3D生成的重要突破。
735 0

推荐镜像

更多
  • DNS