区域生长算法 C++实现

简介: 在比赛和项目中用opencv用多了,就会发现很多opencv没有实现的算法,其中一些还是十分常用,在教科书上经常出现的。作为一个弱鸡,有的简单的算法能够自己实现(比如本文所要讲的),有的写到一半就打出GG,有的直接就下不了手。

在比赛和项目中用opencv用多了,就会发现很多opencv没有实现的算法,其中一些还是十分常用,在教科书上经常出现的。作为一个弱鸡,有的简单的算法能够自己实现(比如本文所要讲的),有的写到一半就打出GG,有的直接就下不了手。。。作为一个非计算机科班的自动化系学生,想要成为一名视觉算法工程师,还是有很长的路要走啊~~

img_bd39b511621087828d7d396c5502f3f7.png
区域生长
1.算法原理

其实看上图和这个名字就很容易理解,区域生长是根据预先定义的生长准则将像素或子区域组合为更大区域的过程。基本方法是从一组“种子”点开始(原点),将与种子相似的临近像素(在特定范围内的灰度或颜色)添加到种子栈中,不断迭代,生成一大片区域。严谨的数学定义可以查看冈萨雷斯的数字图像处理。

2.算法实现

算法的步骤如下:

  • 创建一个与原图像大小相同的空白图像
  • 将种子点存入vector中,vector中存储待生长的种子点
  • 依次弹出种子点并判断种子点如周围8领域的关系(生长规则)并与最大与最小阈值进行比较,符合条件则作为下次生长的种子点
  • vector中不存在种子点后就停止生长

我这里因为项目需要,对原本的区域生长算法多加了最大与最小值的限制,作为默认参数可以不填。

/**
 * @brief 区域生长算法,输入图像应为灰度图像
 * @param srcImage 区域生长的源图像
 * @param pt 区域生长点
 * @param ch1Thres 通道的生长限制阈值,临近像素符合±chxThres范围内才能进行生长
 * @param ch1LowerBind 通道的最小值阈值
 * @param ch1UpperBind 通道的最大值阈值,在这个范围外即使临近像素符合±chxThres也不能生长
 * @return 生成的区域图像(二值类型)
 */
Mat RegionGrow(Mat srcImage, Point pt, int ch1Thres,int ch1LowerBind=0,int ch1UpperBind=255)
{
    Point pToGrowing;                       //待生长点位置
    int pGrowValue = 0;                             //待生长点灰度值
    Scalar pSrcValue = 0;                               //生长起点灰度值
    Scalar pCurValue = 0;                               //当前生长点灰度值
    Mat growImage = Mat::zeros(srcImage.size(), CV_8UC1);   //创建一个空白区域,填充为黑色
    //生长方向顺序数据
    int DIR[8][2] = {{-1,-1}, {0,-1}, {1,-1}, {1,0}, {1,1}, {0,1}, {-1,1}, {-1,0}};
    vector<Point> growPtVector;                     //生长点栈
    growPtVector.push_back(pt);                         //将生长点压入栈中
    growImage.at<uchar>(pt.y, pt.x) = 255;              //标记生长点
    pSrcValue = srcImage.at<uchar>(pt.y, pt.x);         //记录生长点的灰度值

    while (!growPtVector.empty())                       //生长栈不为空则生长
    {
        pt = growPtVector.back();                       //取出一个生长点
        growPtVector.pop_back();

        //分别对八个方向上的点进行生长
        for (int i = 0; i<9; ++i)
        {
            pToGrowing.x = pt.x + DIR[i][0];
            pToGrowing.y = pt.y + DIR[i][1];
            //检查是否是边缘点
            if (pToGrowing.x < 0 || pToGrowing.y < 0 ||
                    pToGrowing.x > (srcImage.cols-1) || (pToGrowing.y > srcImage.rows -1))
                continue;

            pGrowValue = growImage.at<uchar>(pToGrowing.y, pToGrowing.x);       //当前待生长点的灰度值
            pSrcValue = srcImage.at<uchar>(pt.y, pt.x);
            if (pGrowValue == 0)                    //如果标记点还没有被生长
            {
                pCurValue = srcImage.at<uchar>(pToGrowing.y, pToGrowing.x);
                if(pCurValue[0] <= ch1UpperBind && pCurValue[0] >= ch1LowerBind )
                {
                    if (abs(pSrcValue[0] - pCurValue[0]) < ch1Thres )                   //在阈值范围内则生长
                    {
                        growImage.at<uchar>(pToGrowing.y, pToGrowing.x) = 255;      //标记为白色
                        growPtVector.push_back(pToGrowing);                 //将下一个生长点压入栈中
                    }
                }
            }
        }
    }
    return growImage.clone();
}

上面是灰度图像的处理,我这里重载了三通道图像的区域生长

/**
 * @brief 区域生长算法,输入图像应为三通道图像(RGB、HSV、YUV等)
 * @param srcImage 区域生长的源图像
 * @param pt 区域生长点
 * @param ch1Thres ch2Thres ch3Thres 三个通道的生长限制阈值,临近像素符合±chxThres范围内才能进行生长
 * @param ch1LowerBind ch1LowerBind ch1LowerBind 三个通道的最小值阈值
 * @param ch1UpperBind ch2UpperBind ch3UpperBind 三个通道的最大值阈值,在这个范围外即使临近像素符合±chxThres也不能生长
 * @return 生成的区域图像(二值类型)
 */
Mat RegionGrow(Mat srcImage, Point pt, int ch1Thres,int ch2Thres, int ch3Thres,
               int ch1LowerBind=0,int ch1UpperBind=255,int ch2LowerBind=0,
               int ch2UpperBind=255,int ch3LowerBind=0,int ch3UpperBind=255)
{
    Point pToGrowing;                       //待生长点位置
    int pGrowValue = 0;                             //待生长点灰度值
    Scalar pSrcValue = 0;                               //生长起点灰度值
    Scalar pCurValue = 0;                               //当前生长点灰度值
    Mat growImage = Mat::zeros(srcImage.size(), CV_8UC1);   //创建一个空白区域,填充为黑色
    //生长方向顺序数据
    int DIR[8][2] = {{-1,-1}, {0,-1}, {1,-1}, {1,0}, {1,1}, {0,1}, {-1,1}, {-1,0}};
    vector<Point> growPtVector;                     //生长点栈
    growPtVector.push_back(pt);                         //将生长点压入栈中
    growImage.at<uchar>(pt.y, pt.x) = 255;              //标记生长点
    pSrcValue = srcImage.at<Vec3b>(pt.y, pt.x);         //记录生长点的灰度值

    while (!growPtVector.empty())                       //生长栈不为空则生长
    {
        pt = growPtVector.back();                       //取出一个生长点
        growPtVector.pop_back();

        //分别对八个方向上的点进行生长
        for (int i = 0; i<9; ++i)
        {
            pToGrowing.x = pt.x + DIR[i][0];
            pToGrowing.y = pt.y + DIR[i][1];
            //检查是否是边缘点
            if (pToGrowing.x < 0 || pToGrowing.y < 0 ||
                    pToGrowing.x > (srcImage.cols-1) || (pToGrowing.y > srcImage.rows -1))
                continue;

            pGrowValue = growImage.at<uchar>(pToGrowing.y, pToGrowing.x);       //当前待生长点的灰度值
            pSrcValue = srcImage.at<Vec3b>(pt.y, pt.x);
            if (pGrowValue == 0)                    //如果标记点还没有被生长
            {
                pCurValue = srcImage.at<Vec3b>(pToGrowing.y, pToGrowing.x);
                if(pCurValue[0] <= ch1UpperBind && pCurValue[0] >= ch1LowerBind&&   //限制生长点的三通道上下界
                        pCurValue[1] <= ch2UpperBind && pCurValue[1] >= ch2LowerBind &&
                        pCurValue[2] <= ch3UpperBind && pCurValue[2] >= ch3LowerBind )
                {
                    if (abs(pSrcValue[0] - pCurValue[0]) < ch1Thres &&
                            abs(pSrcValue[1] - pCurValue[1]) < ch2Thres &&
                            abs(pSrcValue[2] - pCurValue[2]) < ch3Thres)                    //在阈值范围内则生长
                    {
                        growImage.at<uchar>(pToGrowing.y, pToGrowing.x) = 255;      //标记为白色
                        growPtVector.push_back(pToGrowing);                 //将下一个生长点压入栈中
                    }
                }
            }
        }
    }
    return growImage.clone();
}
3.算法检验
img_d850d57a6e0106932ad53b57295cdb5b.png
原图像

img_f3507215b9a820fa4c0c806b20930666.png
区域生长后

References:
https://blog.csdn.net/robin__chou/article/details/50071313
数字图像处理(第三版) ——冈萨雷斯 P493

目录
相关文章
|
7月前
|
存储 监控 算法
基于 C++ 哈希表算法实现局域网监控电脑屏幕的数据加速机制研究
企业网络安全与办公管理需求日益复杂的学术语境下,局域网监控电脑屏幕作为保障信息安全、规范员工操作的重要手段,已然成为网络安全领域的关键研究对象。其作用类似网络空间中的 “电子眼”,实时捕获每台电脑屏幕上的操作动态。然而,面对海量监控数据,实现高效数据存储与快速检索,已成为提升监控系统性能的核心挑战。本文聚焦于 C++ 语言中的哈希表算法,深入探究其如何成为局域网监控电脑屏幕数据处理的 “加速引擎”,并通过详尽的代码示例,展现其强大功能与应用价值。
172 2
|
8月前
|
存储 算法 C++
Windows共享文件:探秘C++实现的B树索引算法奇境
在数字化时代,Windows共享文件的高效管理至关重要。B树算法以其自平衡多路搜索特性,在文件索引与存储优化中表现出色。本文探讨B树在Windows共享文件中的应用,通过C++实现具体代码,展示其构建文件索引、优化数据存储的能力,提升文件检索效率。B树通过减少磁盘I/O操作,确保查询高效,为企业和个人提供流畅的文件共享体验。
|
7月前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
197 17
|
5月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
163 0
|
6月前
|
存储 机器学习/深度学习 算法
基于 C++ 的局域网访问控制列表(ACL)实现及局域网限制上网软件算法研究
本文探讨局域网限制上网软件中访问控制列表(ACL)的应用,分析其通过规则匹配管理网络资源访问的核心机制。基于C++实现ACL算法原型,展示其灵活性与安全性。文中强调ACL在企业与教育场景下的重要作用,并提出性能优化及结合机器学习等未来研究方向。
180 4
|
6月前
|
机器学习/深度学习 存储 算法
基于 C++ 布隆过滤器算法的局域网上网行为控制:URL 访问过滤的高效实现研究
本文探讨了一种基于布隆过滤器的局域网上网行为控制方法,旨在解决传统黑白名单机制在处理海量URL数据时存储与查询效率低的问题。通过C++实现URL访问过滤功能,实验表明该方法可将内存占用降至传统方案的八分之一,查询速度提升约40%,假阳性率可控。研究为优化企业网络管理提供了新思路,并提出结合机器学习、改进哈希函数及分布式协同等未来优化方向。
192 0
|
8月前
|
存储 监控 算法
基于 C++ 哈希表算法的局域网如何监控电脑技术解析
当代数字化办公与生活环境中,局域网的广泛应用极大地提升了信息交互的效率与便捷性。然而,出于网络安全管理、资源合理分配以及合规性要求等多方面的考量,对局域网内计算机进行有效监控成为一项至关重要的任务。实现局域网内计算机监控,涉及多种数据结构与算法的运用。本文聚焦于 C++ 编程语言中的哈希表算法,深入探讨其在局域网计算机监控场景中的应用,并通过详尽的代码示例进行阐释。
174 4
|
9月前
|
存储 算法 安全
企业员工数据泄露防范策略:基于 C++ 语言的布隆过滤器算法剖析[如何防止员工泄密]
企业运营过程中,防范员工泄密是信息安全领域的核心议题。员工泄密可能致使企业核心数据、商业机密等关键资产的流失,进而给企业造成严重损失。为应对这一挑战,借助恰当的数据结构与算法成为强化信息防护的有效路径。本文专注于 C++ 语言中的布隆过滤器算法,深入探究其在防范员工泄密场景中的应用。
210 8
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
257 0
|
2月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
190 2

热门文章

最新文章