Python爬虫基础:验证码的爬取和识别详解

本文涉及的产品
个人证照识别,个人证照识别 200次/月
教育场景识别,教育场景识别 200次/月
车辆物流识别,车辆物流识别 200次/月
简介:

今天要给大家介绍的是验证码的爬取和识别,不过只涉及到最简单的图形验证码,也是现在比较常见的一种类型。

运行平台:Windows

Python版本:Python3.6

IDE: Sublime Text

其他:Chrome浏览器

简述流程:

步骤1:简单介绍验证码

步骤2:爬取少量验证码图片

步骤3:介绍百度文字识别OCR

步骤4:识别爬取的验证码

步骤5:简单图像处理

目前,很多网站会采取各种各样的措施来反爬虫,验证码就是其中一种,比如当检测到访问频率过高时会弹出验证码让你输入,确认访问网站的不是机器人。但随着爬虫技术的发展,验证码的花样也越来越多,从最开始简单的几个数字或字母构成的图形验证码(也就是我们今天要涉及的)发展到需要点击倒立文字字母的、与文字相符合的图片的点触型验证码,需要滑动到合适位置的极验滑动验证码,以及计算题验证码等等,总之花样百出,让人头秃。验证码其他的相关知识大家可以看下这个网站:captcha.org

再来简单说下图形验证码吧,就像这张:

350dcb75d69e1ac7fb144415c7855b31fd62ae5b

由字母和数字组成,再加上一些噪点,但为了防止被识别,简单的图形验证码现在也变得复杂,有的加了干扰线,有的加噪点,有的加上背景,字体扭曲、粘连、镂空、混用等等,甚至有时候人眼都难以识别,只能默默点击“看不清,再来一张”。

验证码难度的提高随之带来的就是识别的成本也需要提高,在接下来的识别过程中,我会先直接使用百度文字识别OCR,来测试识别准确度,再确认是否选择转灰度、二值化以及去干扰等图像操作优化识别率。

接下来我们就来爬取少量验证码图片存入文件。

首先打开Chrome浏览器,访问刚刚介绍的网站,里面有一个captcha图像样本链接:https://captcha.com/captcha-examples.html?cst=corg,网页里有60张不同类型的图形验证码,足够我们用来识别试验了。

e451893b706ad2c21fdd354fd86c148afa991919

直接来看代码吧:


import requests
import os
import time
from lxml import etree


def get_Page(url,headers):
response = requests.get(url,headers=headers)
if response.status_code == 200:
# print(response.text)
return response.text
return None


def parse_Page(html,headers):
html_lxml = etree.HTML(html)
datas = html_lxml.xpath('.//div[@class="captcha_images_left"]|.//div[@class="captcha_images_right"]')
item= {}
# 创建保存验证码文件夹
file = 'D:/******'
if os.path.exists(file):
os.chdir(file)
else:
os.mkdir(file)
os.chdir(file)
for data in datas:
# 验证码名称
name = data.xpath('.//h3')
# print(len(name))
# 验证码链接
src = data.xpath('.//div/img/@src')
# print(len(src))
count = 0
for i in range(len(name)):
# 验证码图片文件名
filename = name[i].text + '.jpg'
img_url = 'https://captcha.com/' + src[i]
response = requests.get(img_url,headers=headers)
if response.status_code == 200:
image = response.content
with open(filename,'wb') as f:
f.write(image)
count += 1
print('保存第{}张验证码成功'.format(count))
time.sleep(1)


def main():
url = 'https://captcha.com/captcha-examples.html?cst=corg'
headers = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/65.0.3325.146 Safari/537.36'}
html = get_Page(url,headers)
parse_Page(html,headers)


if __name__ == '__main__':
main()

仍然使用Xpath爬取,在右键检查图片时可以发现,网页分为两栏,如下图红框所示,根据class分为左右两栏,验证码分别位于两栏中。

62abbb7cc04b6c71bfcfde60298f12517d6bb25a

datas = html_lxml.xpath('.//div[@class="captcha_images_left"]|.//div[@class="captcha_images_right"]')

这里我使用了Xpath中的路径选择,在路径表达式中使用“|”表示选取若干路径,例如这里表示的就是选取class"captcha_images_left"或者"captcha_images_right"的区块。再来看下运行结果:

721cfcc42c46bd530065ac2172f52ef5eae3cd57

由于每爬取一张验证码图片都强制等待了1秒,最后这个运行时间确实让人绝望,看样子还是需要多线程来加快速度的,关于多进程多线程我们下次再说,这里我们先来看下爬取到的验证码图片。

351aebf962a5cbb924f4f7b4b18b6cd44d57077f

图片到手了,接下来就是调用百度文字识别的OCR来识别这些图片了,在识别之前,先简单介绍一下百度OCR的使用方法,因为很多识别验证码的教程用的都是tesserocr库,所以一开始我也尝试过,安装过程中就遇到了很多坑,后来还是没有继续使用,而是选择了百度OCR来识别。百度OCR接口提供了自然场景下图片文字检测、定位、识别等功能。文字识别的结果可以用于翻译、搜索、验证码等代替用户输入的场景。另外还有其他视觉、语音技术方面的识别功能,大家可以直接阅读文档了解:百度OCR-API文档https://ai.baidu.com/docs#/OCR-API/top

0deeca7fcf2c1c7b644135f3eda19afbd481b444

使用百度OCR的话,首先注册用户,然后下载安装接口模块,直接终端输入pip install baidu-aip即可。然后创建文字识别应用,获取相关Appid,API Key以及Secret Key,需要了解一下的是百度AI每日提供50000次免费调用通用文字识别接口的使用次数,足够我们挥霍了。

61f3aaa7d9d6998543635f2290de08d1f90b8c2c

然后就可以直接调用代码了。


from aip import AipOcr

# 你的 APPID AK SK
APP_ID = '你的 APP_ID '
API_KEY = '你的API_KEY'
SECRET_KEY = '你的SECRET_KEY'

client = AipOcr(APP_ID, API_KEY, SECRET_KEY)

# 读取图片
def get_file_content(filePath):
with open(filePath, 'rb') as fp:
return fp.read()

image = get_file_content('test.jpg')

# 调用通用文字识别, 图片参数为本地图片
result = client.basicGeneral(image)


# 定义参数变量
options = {
# 定义图像方向
'detect_direction' : 'true',
# 识别语言类型,默认为'CHN_ENG'中英文混合
'language_type' : 'CHN_ENG',


}

# 调用通用文字识别接口
result = client.basicGeneral(image,options)
print(result)
for word in result['words_result']:
print(word['words'])

这里我们识别的是这张图

6dc8b56c38fa08beace4e5c552439a2a8f33d277

可以看一下识别结果

2127c71e49cbf37ab26f34ddf9e1f1ea40a2458f

上面是识别后直接输出的结果,下面是单独提取出来的文字部分。可以看到,除了破折号没有输出外,文字部分都全部正确输出了。这里我们使用的图片是jpg格式,文字识别传入的图像支持jpg/png/bmp格式,但在技术文档中有提到,使用jpg格式的图片上传会提高一定准确率,这也是我们爬取验证码时使用jpg格式保存的原因。

输出结果中,各字段分别代表:

 ●   log_id : 唯一的log id,用于定位问题
 ●   direction : 图像方向,传入参数时定义为true表示检测,0表示正向,1表示逆时针90度,2表示逆时针180度,3表示逆时针270度,-1表示未定义。
 ●   words_result_num : 识别的结果数,即word_result的元素个数
 ●   word_result : 定义和识别元素数组
 ●  words : 识别出的字符串
还有一些非必选字段大家可以去文档里熟悉一下。

接下来,我们要做的,就是将我们之前爬取到的验证码用刚介绍的OCR来识别,看看究竟能不能得到正确结果。


from aip import AipOcr
import os


i = 0
j = 0
APP_ID = '你的 APP_ID '
API_KEY = '你的API_KEY'
SECRET_KEY = '你的SECRET_KEY'

client = AipOcr(APP_ID, API_KEY, SECRET_KEY)

# 读取图片
file_path = 'D:\******\验证码图片'
filenames = os.listdir(file_path)
# print(filenames)
for filename in filenames:
# 将路径与文件名结合起来就是每个文件的完整路径
info = os.path.join(file_path,filename)
with open(info, 'rb') as fp:
# 获取文件夹的路径
image = fp.read()
# 调用通用文字识别, 图片参数为本地图片
result = client.basicGeneral(image)
# 定义参数变量
options = {
'detect_direction' : 'true',
'language_type' : 'CHN_ENG',
}
# 调用通用文字识别接口
result = client.basicGeneral(image,options)
# print(result)
if result['words_result_num'] == 0:
print(filename + ':' + '----')
i += 1
else:
for word in result['words_result']:
print(filename + ' : ' +word['words'])
j += 1

print('共识别验证码{}张'.format(i+j))
print('未识别出文本{}张'.format(i))
print('已识别出文本{}张'.format(j))

和识别图片一样,这里我们将文件夹验证码图片里的图片全部读取出来,依次让OCR识别,并依据“word_result_num”字段判断是否成功识别出文本,识别出文本则打印结果,未识别出来的用“----”代替,并结合文件名对应识别结果 。最后统计识别结果数量,再来看下识别结果。

01483f8f781ba831126f5298c7465c0ad1cd1b58

看到结果,只能说Amazing!60张图片居然识别出了65张,并且还有27张为未识别出文本的,这不是我想要的结果~先来简单看下问题出在哪里,看到“Vertigo Captcha Image.jpg"这张图名出现了两次,怀疑是在识别过程中由于被干扰,所以识别成两行文字输出了,这样就很好解释为什么多出来5张验证码图片了。可是!为什么会有这么多未识别出文本呢,而且英文数字组成的验证码识别成中文了,看样子,不对验证码图片进行去干扰处理,仅靠OCR来识别的想法果然还是行不通啊。那么接下来我们便使用图像处理的方法来重新识别验证码吧。

还是介绍验证码时用的这张图

f673c7263d037e38b8441f10031cffcaf99d82cb

这张图也没能被识别出来,让人头秃。接下来就对这张图片进行一定处理,看能不能让OCR正确识别


from PIL import Image

filepath = 'D:\******\验证码图片\AncientMosaic Captcha Image.jpg'
image = Image.open(filepath)
# 传入'L'将图片转化为灰度图像
image = image.convert('L')
# 传入'1'将图片进行二值化处理
image = image.convert('1')
image.show()

这样子转化后再来看下图片变成什么样了?

7978d1fb9e443d702c8e376dd5d3de5adcfb0c2e

确实有些不同了,赶紧拿去试试能不能识别,还是失败了~~继续修改


from PIL import Image

filepath = 'D:\******\验证码图片\AncientMosaic Captcha Image.bmp'
image = Image.open(filepath)
# 传入'L'将图片转化为灰度图像
image = image.convert('L')
# 传入'l'将图片进行二值化处理,默认二值化阈值为127
# 指定阈值进行转化
count= 170
table = []
for i in range(256):
if i < count:
table.append(0)
else:
table.append(1 )
image = image.point(table,'1')
image.show()

这里我将图片保存成了bmp模式,然后指定二值化的阈值,不指定的话默认为127,我们需要先转化原图为灰度图像,不能直接在原图上转化。然后将构成验证码的所需像素添加到一个table中,然后再使用point方法构建新的验证码图片。

d53c066aad8919b61b0cd665b45845ec2b30fbbe

现在已经识别到文字了,虽然我不知道为啥识别成了“珍”,分析之后发现是因为z我在设置参数设置了“language_type”“CHN_ENG”,中英文混合模式,于是我修改成“ENG”英文类型,发现可以识别成字符了,但依然没有识别成功,尝试其他我所知道的方法后,我表示很无语,我决定继续尝试PIL库的其他方法试试。


# 找到边缘
image = image.filter(ImageFilter.FIND_EDGES)
# image.show()
# 边缘增强
image = image.filter(ImageFilter.EDGE_ENHANCE)
image.show()
0af6488b2427e431e9179dade48ef4e76d808798

还是不能正确识别,我决定换个验证码试试。。。。。。

0f53c0b6aa8b4f5cbfecf550f88e23f3b54e9e7e

我找了这张带有阴影的


from PIL import Image,ImageFilter

filepath = 'D:\******\验证码图片\CrossShadow2 Captcha Image.jpg'
image = Image.open(filepath)
# 传入'L'将图片转化为灰度图像
image = image.convert('L')

# 传入'l'将图片进行二值化处理,默认二值化阈值为127
# 指定阈值进行转化
count= 230
table = []
for i in range(256):
if i < count:
table.append(1)
else:
table.append(0)
image = image.point(table,'1')
image.show()

简单处理后,得到这样的图片:

f1ff79501e986808882512db475af474184ff00c

识别结果为:

1ca5df6745985e97e480d393a9979ccf6e3c3336

识别成功了,老泪纵横!!!看样子百度OCR还是可以识别出验证码的,不过识别率还是有点低,需要对图像进行一定处理,才能增加识别的准确率。不过百度OCR对规范文本的识别还是很准确的。

那么与其他验证码相比,究竟是什么让这个验证码更容易被OCR读懂呢?

 ●   字母没有相互叠加在一起,在水平方向上也没有彼此交叉。也就是说,可以在每一个字 母外面画一个方框,而不会重叠在一起。
 ●   图片没有背景色、线条或其他对 OCR 程序产生干扰的噪点。
 ●   白色背景色与深色字母之间的对比度很高。

这样的验证码相对识别起来较容易,另外,像识别图片时的白底黑字就属于很标准的规范文本了,所以识别的准确度较高。至于更复杂的图形验证码,就需要更深的图像处理技术或者训练好的OCR来完成了,如果只是简单识别一个验证码的话,不如人工查看图片输入,更多一点的话,也可以交给打码平台来识别。


原文发布时间为:2018-11-9

本文作者:HDMI

本文来自云栖社区合作伙伴“Python中文社区”,了解相关信息可以关注“Python中文社区”。

相关文章
|
2天前
|
数据采集 JSON 数据格式
Python爬虫:京东商品评论内容
京东商品评论接口为商家和消费者提供了重要工具。商家可分析评论优化产品,消费者则依赖评论做出购买决策。该接口通过HTTP请求获取评论内容、时间、点赞数等数据,支持分页和筛选好评、中评、差评。Python示例代码展示了如何调用接口并处理返回的JSON数据。应用场景包括产品优化、消费者决策辅助、市场竞争分析及舆情监测。
|
14天前
|
数据采集 供应链 API
Python爬虫与1688图片搜索API接口:深度解析与显著收益
在电子商务领域,数据是驱动业务决策的核心。阿里巴巴旗下的1688平台作为全球领先的B2B市场,提供了丰富的API接口,特别是图片搜索API(`item_search_img`),允许开发者通过上传图片搜索相似商品。本文介绍如何结合Python爬虫技术高效利用该接口,提升搜索效率和用户体验,助力企业实现自动化商品搜索、库存管理优化、竞品监控与定价策略调整等,显著提高运营效率和市场竞争力。
53 3
|
25天前
|
数据采集 存储 缓存
如何使用缓存技术提升Python爬虫效率
如何使用缓存技术提升Python爬虫效率
|
26天前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
1月前
|
数据采集 JSON API
如何利用Python爬虫淘宝商品详情高级版(item_get_pro)API接口及返回值解析说明
本文介绍了如何利用Python爬虫技术调用淘宝商品详情高级版API接口(item_get_pro),获取商品的详细信息,包括标题、价格、销量等。文章涵盖了环境准备、API权限申请、请求构建和返回值解析等内容,强调了数据获取的合规性和安全性。
|
1月前
|
数据采集 存储 API
利用Python爬虫获取1688关键词接口全攻略
本文介绍如何使用Python爬虫技术合法合规地获取1688关键词接口数据,包括环境准备、注册1688开发者账号、获取Access Token、构建请求URL、发送API请求、解析HTML及数据处理存储等步骤,强调遵守法律法规和合理使用爬虫技术的重要性。
|
1月前
|
数据采集 JSON 开发者
Python爬虫京东商品详情数据接口
京东商品详情数据接口(JD.item_get)提供商品标题、价格、品牌、规格、图片等详细信息,适用于电商数据分析、竞品分析等。开发者需先注册账号、创建应用并申请接口权限,使用时需遵循相关规则,注意数据更新频率和错误处理。示例代码展示了如何通过 Python 调用此接口并处理返回的 JSON 数据。
|
2月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
147 6
|
2月前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
122 4
|
5月前
|
数据采集 存储 中间件
Python进行网络爬虫:Scrapy框架的实践
【8月更文挑战第17天】网络爬虫是自动化程序,用于从互联网收集信息。Python凭借其丰富的库和框架成为构建爬虫的首选语言。Scrapy作为一款流行的开源框架,简化了爬虫开发过程。本文介绍如何使用Python和Scrapy构建简单爬虫:首先安装Scrapy,接着创建新项目并定义爬虫,指定起始URL和解析逻辑。运行爬虫可将数据保存为JSON文件或存储到数据库。此外,Scrapy支持高级功能如中间件定制、分布式爬取、动态页面渲染等。在实践中需遵循最佳规范,如尊重robots.txt协议、合理设置爬取速度等。通过本文,读者将掌握Scrapy基础并了解如何高效地进行网络数据采集。
288 6

热门文章

最新文章