View的测量、布局和绘制过程

简介: 写在前面的话        按照之前写的节奏来的话,这篇改对View的整个测量、布局和绘制过程进行分析了。在之前的Activity显示到Window的过程中了解到performTraversals()这个方法会执行performMeasure()去测量View的大小,performLayout()去将子View放到合适的位置上,performDraw()将View真正绘制出来。

写在前面的话

        按照之前写的节奏来的话,这篇改对View的整个测量、布局和绘制过程进行分析了。在之前的Activity显示到Window的过程中了解到performTraversals()这个方法会执行performMeasure()去测量View的大小,performLayout()去将子View放到合适的位置上,performDraw()将View真正绘制出来。

1. measure的过程

1.1 在测量前,先看下MeasureSpec

MeasureSpec理解为测量规格,从源码中可以知道测量规格包括了测量模式(SpecMode)和大小(SpecSize),这个规格通过一个int型来表示。其中int的高2位代表了测量模式,低30位代表了大小。我们都知道两位可以有四种组合情况,而Android中View有三种测量模式,分别是:

  • UNSPECIFIED(0 << 30):子View可以想要任意大小
  • EXACTLY(1 << 30):父容器已经检测出子View所需要的精确大小,View的大小即为SpecSize的大小,他对应于布局参数中的MATCH_PARENT,或者精确值
  • AT_MOST(2 << 30):父容器指定了一个大小,即SpecSize,子View的大小不能超过这个SpecSize的大小
    通过测量规格获取测量模式和大小:
private static final int MODE_SHIFT = 30;
private static final int MODE_MASK  = 0x3 << MODE_SHIFT;

// 获得SpecMode
@MeasureSpecMode
public static int getMode(int measureSpec) {
    return (measureSpec & MODE_MASK);
}
// 获得SpecSize
public static int getSize(int measureSpec) {
    return (measureSpec & ~MODE_MASK);
}

从上面可以看到,获得SpecMode时,需要和MODE_MASK(0x30000000)进行与运算,因为低30位全为0,高2位都为1,所以最终的结果就是高2位<<30的值,也就是我们三个测量模式中的一个。
同理,在获得SpecSize时,我们需要将SpecMode去除,获得低30位的值,所以这里进行的是与上非MODE_MASK运算,即获取低30位的值(SpecSize)。

1.2 getRootMeasureSpec方法

在执行performMeasure()方法前,会执行ViewRootImpl中的getRootMeasureSpec方法,通过这个方法来获得跟布局的测量规格。

// mWidth和mHeight的值是通过
//if (mWidth != frame.width() || mHeight != frame.height()) {
//mWidth = frame.width();
//mHeight = frame.height();
//}
//赋值,这里等于Window窗口的宽高
int childWidthMeasureSpec = getRootMeasureSpec(mWidth, lp.width);
int childHeightMeasureSpec = getRootMeasureSpec(mHeight, lp.height);
private static int getRootMeasureSpec(int windowSize, int rootDimension) {
    int measureSpec;
    switch (rootDimension) {
    //rootDimension是decorView的params的参数,这里为MATCH_PARENT,所以测量模式是EXACTLY
    case ViewGroup.LayoutParams.MATCH_PARENT:
        // Window can't resize. Force root view to be windowSize.
        measureSpec = MeasureSpec.makeMeasureSpec(windowSize, MeasureSpec.EXACTLY);
        break;
    case ViewGroup.LayoutParams.WRAP_CONTENT:
        // Window can resize. Set max size for root view.
        measureSpec = MeasureSpec.makeMeasureSpec(windowSize, MeasureSpec.AT_MOST);
        break;
    default:
        // Window wants to be an exact size. Force root view to be that size.
        measureSpec = MeasureSpec.makeMeasureSpec(rootDimension, MeasureSpec.EXACTLY);
        break;
    }
    return measureSpec;
}

1.3 View的measure方法

在获得了宽高的测量规格后,将会执行performMeasure()方法,performMeasure()方法会调用DecorView的measure()方法,DecorView和其父类并没有重写这个measure方法,最终会调用View的measure方法。

public final void measure(int widthMeasureSpec, int heightMeasureSpec) {
    //判断当前View的layoutMode是不是LAYOUT_MODE_OPTICAL_BOUNDS,这种情况很少
    boolean optical = isLayoutModeOptical(this);
    if (optical != isLayoutModeOptical(mParent)) {
        Insets insets = getOpticalInsets();
        int oWidth  = insets.left + insets.right;
        int oHeight = insets.top  + insets.bottom;
        widthMeasureSpec  = MeasureSpec.adjust(widthMeasureSpec,  optical ? -oWidth  : oWidth);
        heightMeasureSpec = MeasureSpec.adjust(heightMeasureSpec, optical ? -oHeight : oHeight);
    }
    
    // 作为缓存的key
    // Suppress sign extension for the low bytes
    long key = (long) widthMeasureSpec << 32 | (long) heightMeasureSpec & 0xffffffffL;
    if (mMeasureCache == null) mMeasureCache = new LongSparseLongArray(2);

    final boolean forceLayout = (mPrivateFlags & PFLAG_FORCE_LAYOUT) == PFLAG_FORCE_LAYOUT;

    // Optimize layout by avoiding an extra EXACTLY pass when the view is
    // already measured as the correct size. In API 23 and below, this
    // extra pass is required to make LinearLayout re-distribute weight.
    final boolean specChanged = widthMeasureSpec != mOldWidthMeasureSpec
            || heightMeasureSpec != mOldHeightMeasureSpec;
    final boolean isSpecExactly = MeasureSpec.getMode(widthMeasureSpec) == MeasureSpec.EXACTLY
            && MeasureSpec.getMode(heightMeasureSpec) == MeasureSpec.EXACTLY;
    final boolean matchesSpecSize = getMeasuredWidth() == MeasureSpec.getSize(widthMeasureSpec)
            && getMeasuredHeight() == MeasureSpec.getSize(heightMeasureSpec);
    final boolean needsLayout = specChanged
            && (sAlwaysRemeasureExactly || !isSpecExactly || !matchesSpecSize);
    
    // 需要布局
    if (forceLayout || needsLayout) {
        // first clears the measured dimension flag
        mPrivateFlags &= ~PFLAG_MEASURED_DIMENSION_SET;

        resolveRtlPropertiesIfNeeded();
        // 如果是强制布局的话,则需要重新去调用onMeasure方法,否则去缓存中获取
        int cacheIndex = forceLayout ? -1 : mMeasureCache.indexOfKey(key);
        if (cacheIndex < 0 || sIgnoreMeasureCache) {
            // measure ourselves, this should set the measured dimension flag back
            onMeasure(widthMeasureSpec, heightMeasureSpec);
            mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
        } else {
            long value = mMeasureCache.valueAt(cacheIndex);
            // Casting a long to int drops the high 32 bits, no mask needed
            setMeasuredDimensionRaw((int) (value >> 32), (int) value);
            mPrivateFlags3 |= PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
        }

        // flag not set, setMeasuredDimension() was not invoked, we raise
        // an exception to warn the developer
        if ((mPrivateFlags & PFLAG_MEASURED_DIMENSION_SET) != PFLAG_MEASURED_DIMENSION_SET) {
            throw new IllegalStateException("View with id " + getId() + ": "
                    + getClass().getName() + "#onMeasure() did not set the"
                    + " measured dimension by calling"
                    + " setMeasuredDimension()");
        }

        mPrivateFlags |= PFLAG_LAYOUT_REQUIRED;
    }

    mOldWidthMeasureSpec = widthMeasureSpec;
    mOldHeightMeasureSpec = heightMeasureSpec;
    // 放到缓存中
    mMeasureCache.put(key, ((long) mMeasuredWidth) << 32 |
            (long) mMeasuredHeight & 0xffffffffL); // suppress sign extension
}

// onMeasure中需要去设置测量的结果,View的默认实现是设置默认的大小,这个大小根据测量模式来确定
// 如果是UNSPECIFIED:未指定的话则大小为建议的最小值
// 如果是AT_MOST||EXACTLY,那么返回值为SpecSize
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
    setMeasuredDimension(getDefaultSize(getSuggestedMinimumWidth(), widthMeasureSpec),
            getDefaultSize(getSuggestedMinimumHeight(), heightMeasureSpec));
}

protected final void setMeasuredDimension(int measuredWidth, int measuredHeight) {
    boolean optical = isLayoutModeOptical(this);
    if (optical != isLayoutModeOptical(mParent)) {
        Insets insets = getOpticalInsets();
        int opticalWidth  = insets.left + insets.right;
        int opticalHeight = insets.top  + insets.bottom;

        measuredWidth  += optical ? opticalWidth  : -opticalWidth;
        measuredHeight += optical ? opticalHeight : -opticalHeight;
    }
    // 真正为mMeasuredWidth和mMeasuredHeight赋值
    setMeasuredDimensionRaw(measuredWidth, measuredHeight);
}
// 为mMeasuredWidth和mMeasuredHeight赋值
private void setMeasuredDimensionRaw(int measuredWidth, int measuredHeight) {
    mMeasuredWidth = measuredWidth;
    mMeasuredHeight = measuredHeight;

    mPrivateFlags |= PFLAG_MEASURED_DIMENSION_SET;
}

从代码中可以看到,如果我们需要进行布局的话,首先判断是否为强制布局,如果不是的话获得mMeasureCache中当前测量规格的位置。如果没有这个缓存,则说明需要去进行onMeasure方法去测量真正的宽高,最后将当前宽高的测量规格保存到缓存中。
在调用View的onMeasure方法时,我们需要调用setMeasuredDimension方法来设置具体的宽高,当调用了这个方法后,会通过setMeasuredDimensionRaw方法来给mMeasuredWidth和mMeasuredHeight赋值,这样我们通过getMeasuredWidthAndState()获取mMeasuredWidth值或者通过getMeasuredWidth()来获取mMeasuredWidth & MEASURED_SIZE_MASK(0x00ffffff)值。
上面写到的都是View里面关于测量的方法,从这里我们就看出来了,View的测量确定了View的四个点的位置以及测量的宽高。ViewGroup作为View的子类,其并没有重写onMeasure方法,作为ViewGroup的子类基本上都会重写onMeasure方法,通过onMeasure方法来测量子View的大小,通过子View的大小最终来确定自己的大小。
下面是FrameLayout的测量过程:

FrameLayout.java
@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
    int count = getChildCount();
    // 如果当前的测量模式不是EXACTLY,则需要统计拥有MATCH_PARENT属性的子View
    // 在设置完成当前layout的宽高后,需要重新测量拥有MATCH_PARENT属性的子View
    final boolean measureMatchParentChildren =
            MeasureSpec.getMode(widthMeasureSpec) != MeasureSpec.EXACTLY ||
            MeasureSpec.getMode(heightMeasureSpec) != MeasureSpec.EXACTLY;
    mMatchParentChildren.clear();

    int maxHeight = 0;
    int maxWidth = 0;
    int childState = 0;

    for (int i = 0; i < count; i++) {
        final View child = getChildAt(i);
        // 如果子View不是隐藏状态,则需要测量
        if (mMeasureAllChildren || child.getVisibility() != GONE) {
            // 测量子View
            measureChildWithMargins(child, widthMeasureSpec, 0, heightMeasureSpec, 0);
            final LayoutParams lp = (LayoutParams) child.getLayoutParams();
            // 设置最大宽度,每个子View和当前的最大宽度进行比较
            maxWidth = Math.max(maxWidth,
                    child.getMeasuredWidth() + lp.leftMargin + lp.rightMargin);
            maxHeight = Math.max(maxHeight,
                    child.getMeasuredHeight() + lp.topMargin + lp.bottomMargin);
            childState = combineMeasuredStates(childState, child.getMeasuredState());
            if (measureMatchParentChildren) {
                if (lp.width == LayoutParams.MATCH_PARENT ||
                        lp.height == LayoutParams.MATCH_PARENT) {
                    mMatchParentChildren.add(child);
                }
            }
        }
    }

    // Account for padding too
    maxWidth += getPaddingLeftWithForeground() + getPaddingRightWithForeground();
    maxHeight += getPaddingTopWithForeground() + getPaddingBottomWithForeground();

    // Check against our minimum height and width
    maxHeight = Math.max(maxHeight, getSuggestedMinimumHeight());
    maxWidth = Math.max(maxWidth, getSuggestedMinimumWidth());

    // Check against our foreground's minimum height and width
    final Drawable drawable = getForeground();
    if (drawable != null) {
        maxHeight = Math.max(maxHeight, drawable.getMinimumHeight());
        maxWidth = Math.max(maxWidth, drawable.getMinimumWidth());
    }
    // 为当前layout设置宽高
    setMeasuredDimension(resolveSizeAndState(maxWidth, widthMeasureSpec, childState),
            resolveSizeAndState(maxHeight, heightMeasureSpec,
                    childState << MEASURED_HEIGHT_STATE_SHIFT));
    // 如果有MATCH_PARENT属性的子View大于1的话,则需要重新去测量这些子View
    count = mMatchParentChildren.size();
    if (count > 1) {
        for (int i = 0; i < count; i++) {
            final View child = mMatchParentChildren.get(i);
            final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams();

            final int childWidthMeasureSpec;
            if (lp.width == LayoutParams.MATCH_PARENT) {
                final int width = Math.max(0, getMeasuredWidth()
                        - getPaddingLeftWithForeground() - getPaddingRightWithForeground()
                        - lp.leftMargin - lp.rightMargin);
                childWidthMeasureSpec = MeasureSpec.makeMeasureSpec(
                        width, MeasureSpec.EXACTLY);
            } else {
                childWidthMeasureSpec = getChildMeasureSpec(widthMeasureSpec,
                        getPaddingLeftWithForeground() + getPaddingRightWithForeground() +
                        lp.leftMargin + lp.rightMargin,
                        lp.width);
            }

            final int childHeightMeasureSpec;
            if (lp.height == LayoutParams.MATCH_PARENT) {
                final int height = Math.max(0, getMeasuredHeight()
                        - getPaddingTopWithForeground() - getPaddingBottomWithForeground()
                        - lp.topMargin - lp.bottomMargin);
                childHeightMeasureSpec = MeasureSpec.makeMeasureSpec(
                        height, MeasureSpec.EXACTLY);
            } else {
                childHeightMeasureSpec = getChildMeasureSpec(heightMeasureSpec,
                        getPaddingTopWithForeground() + getPaddingBottomWithForeground() +
                        lp.topMargin + lp.bottomMargin,
                        lp.height);
            }

            child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
        }
    }
}
ViewGroup.java
protected void measureChildWithMargins(View child,
        int parentWidthMeasureSpec, int widthUsed,
        int parentHeightMeasureSpec, int heightUsed) {
    final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams();

    final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
            mPaddingLeft + mPaddingRight + lp.leftMargin + lp.rightMargin
                    + widthUsed, lp.width);
    final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
            mPaddingTop + mPaddingBottom + lp.topMargin + lp.bottomMargin
                    + heightUsed, lp.height);
    // 两个测量规格都有了,接着通过child.measure去测量自身大小
    child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
}
ViewGroup.java
public static int getChildMeasureSpec(int spec, int padding, int childDimension) {
    int specMode = MeasureSpec.getMode(spec);
    int specSize = MeasureSpec.getSize(spec);

    int size = Math.max(0, specSize - padding);

    int resultSize = 0;
    int resultMode = 0;

    switch (specMode) {
    // EXACTLY如果是精确大小的话,则根据child的大小来计算具体大小
    // Parent has imposed an exact size on us
    case MeasureSpec.EXACTLY:
        if (childDimension >= 0) {
            // 如果设置有具体值,则结果设置具体值,模式为EXACTLY
            resultSize = childDimension;
            resultMode = MeasureSpec.EXACTLY;
        } else if (childDimension == LayoutParams.MATCH_PARENT) {
            // Child wants to be our size. So be it.
            // MATCH_PARENT则设置父View的大小,模式为EXACTLY
            resultSize = size;
            resultMode = MeasureSpec.EXACTLY;
        } else if (childDimension == LayoutParams.WRAP_CONTENT) {
            // Child wants to determine its own size. It can't be
            // bigger than us.
            // 结果设置成父View大小,并且测量模式设置成AT_MOST
            resultSize = size;
            resultMode = MeasureSpec.AT_MOST;
        }
        break;
    
    // AT_MOST模式
    // Parent has imposed a maximum size on us
    case MeasureSpec.AT_MOST:
        if (childDimension >= 0) {
            // Child wants a specific size... so be it
            // 设置具体大小,并且测量模式是EXACTLY
            resultSize = childDimension;
            resultMode = MeasureSpec.EXACTLY;
        } else if (childDimension == LayoutParams.MATCH_PARENT) {
            // Child wants to be our size, but our size is not fixed.
            // Constrain child to not be bigger than us.
            // 设置成父View大小,并且模式是AT_MOST
            resultSize = size;
            resultMode = MeasureSpec.AT_MOST;
        } else if (childDimension == LayoutParams.WRAP_CONTENT) {
            // Child wants to determine its own size. It can't be
            // bigger than us.
            // 设置成父View大小,并且模式是AT_MOST
            resultSize = size;
            resultMode = MeasureSpec.AT_MOST;
        }
        break;
    // UNSPECIFIED模式
    // Parent asked to see how big we want to be
    case MeasureSpec.UNSPECIFIED:
        if (childDimension >= 0) {
            // Child wants a specific size... let him have it
            // 设置具体大小,并且测量模式是EXACTLY
            resultSize = childDimension;
            resultMode = MeasureSpec.EXACTLY;
        } else if (childDimension == LayoutParams.MATCH_PARENT) {
            // Child wants to be our size... find out how big it should
            // be
            // sUseZeroUnspecifiedMeasureSpec = targetSdkVersion < M
            // 通过targetSdkVersion来判断size设置为0还是父View的size,并且测量模式设置UNSPECIFIED
            resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
            resultMode = MeasureSpec.UNSPECIFIED;
        } else if (childDimension == LayoutParams.WRAP_CONTENT) {
            // Child wants to determine its own size.... find out how
            // big it should be
            // 通过targetSdkVersion来判断size设置为0还是父View的size,并且测量模式设置UNSPECIFIED
            resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
            resultMode = MeasureSpec.UNSPECIFIED;
        }
        break;
    }
    //noinspection ResourceType
    return MeasureSpec.makeMeasureSpec(resultSize, resultMode);
}
View.java
// 这个我的理解是解析size并使这个size拥有一个状态
public static int resolveSizeAndState(int size, int measureSpec, int childMeasuredState) {
    final int specMode = MeasureSpec.getMode(measureSpec);
    final int specSize = MeasureSpec.getSize(measureSpec);
    final int result;
    switch (specMode) {
        // 如果是AT_MOST模式,则需要判断需要的size和测量规格的SpecSize的大小
        // 如果需要的size>SpecSize,那么使用SpecSize,并且设置标志位为MEASURED_STATE_TOO_SMALL = 0x01000000
        // 这个标志为代表了当前测量规格的大小小于所需大小
        case MeasureSpec.AT_MOST:
            if (specSize < size) {
                result = specSize | MEASURED_STATE_TOO_SMALL;
            } else {
                result = size;
            }
            break;
        // 如果测量模式是EXACTLY,那么这个结果就是specSize
        case MeasureSpec.EXACTLY:
            result = specSize;
            break;
        // 其他情况都是所需的size
        case MeasureSpec.UNSPECIFIED:
        default:
            result = size;
    }
    //MEASURED_STATE_MASK = 0xff000000,这里的结果都带有一个状态,这个状态的用处不详。。。
    return result | (childMeasuredState & MEASURED_STATE_MASK);
}

从上面FrameLayout的测量过程我们可以看到,整个流程如下:


img_8ddc762180925a41270dcf57431bd047.png
流程图

测量过程:

  1. FrameLayout调用onMeasure方法,开始测量
  2. FrameLayout的onMeasure方法中调用了其父类的measureChildWithMargins方法去测量子View的大小
  3. measureChildWithMargins通过getChildMeasureSpec方法获得子View的测量规格后调用子View的measure方法
  4. 子View通过调用onMeasure方法最终通过setMeasuredDimension设置具体的测量后的宽高
  5. FrameLayout在获得所有子View的结果后,获取其中的最大值,并且如果有背景图的话,获取子View和背景图的最大值,同样通过setMeasuredDimension设置FrameLayout的大小

2. layout过程

        measure之后就会进行layout过程。layout其实就是对View的left、top、right、bottom这四个点位置的确定的过程。从源码可以看到,View中实现了layout方法,ViewGroup对其进行了Override,但是ViewGroup会调用super.layout(l, t, r, b),所以最终还是进入View的layout方法。
        在ViewGroup中onLayout是一个抽象方法,这就意味着所有的子类需要实现这个抽象方法。一般来说,每个不同的layout都有不同的实现,这样就构成了我们Android各种布局。当然了,自定义控件中关于onLayout的实现也是很重要的。下面还是关于FrameLayout的layout的实现:

View.java
public void layout(int l, int t, int r, int b) {
    // mPrivateFlags3的赋值是在measure方法中,多次测量是在不是强制layout并且有缓存的情况下进行赋值的
    // 这种情况需要重新调用onMeasure方法,对View重新设置大小
    if ((mPrivateFlags3 & PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT) != 0) {
        onMeasure(mOldWidthMeasureSpec, mOldHeightMeasureSpec);
        mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
    }

    int oldL = mLeft;
    int oldT = mTop;
    int oldB = mBottom;
    int oldR = mRight;
    // 是否使用视觉边界布局效果,这个并不影响这个流程,因为setOpticalFrame也会调用setFrame方法
    boolean changed = isLayoutModeOptical(mParent) ?
            setOpticalFrame(l, t, r, b) : setFrame(l, t, r, b);
    // 如果有改变,则需要重新布局
    if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) {
        // 调用onLayout方法进行布局
        onLayout(changed, l, t, r, b);

        if (shouldDrawRoundScrollbar()) {
            if(mRoundScrollbarRenderer == null) {
                mRoundScrollbarRenderer = new RoundScrollbarRenderer(this);
            }
        } else {
            mRoundScrollbarRenderer = null;
        }

        mPrivateFlags &= ~PFLAG_LAYOUT_REQUIRED;
        // 调用OnLayoutChangeListener的onLayoutChange方法
        ListenerInfo li = mListenerInfo;
        if (li != null && li.mOnLayoutChangeListeners != null) {
            ArrayList<OnLayoutChangeListener> listenersCopy =
                    (ArrayList<OnLayoutChangeListener>)li.mOnLayoutChangeListeners.clone();
            int numListeners = listenersCopy.size();
            for (int i = 0; i < numListeners; ++i) {
                listenersCopy.get(i).onLayoutChange(this, l, t, r, b, oldL, oldT, oldR, oldB);
            }
        }
    }

    mPrivateFlags &= ~PFLAG_FORCE_LAYOUT;
    mPrivateFlags3 |= PFLAG3_IS_LAID_OUT;
}
View.java
// 返回值是boolean,代表是否位置改变了,如果和以前的位置不同,则说明改变了,需要重新布局
protected boolean setFrame(int left, int top, int right, int bottom) {
    boolean changed = false;
    // 如果和以前的位置不同,则说明改变了,需要重新布局
    if (mLeft != left || mRight != right || mTop != top || mBottom != bottom) {
        changed = true;

        // Remember our drawn bit
        int drawn = mPrivateFlags & PFLAG_DRAWN;

        int oldWidth = mRight - mLeft;
        int oldHeight = mBottom - mTop;
        int newWidth = right - left;
        int newHeight = bottom - top;
        // 原宽高和新宽高如果不一致,则说明尺寸改变了
        boolean sizeChanged = (newWidth != oldWidth) || (newHeight != oldHeight);
        // 使我们旧的位置无效
        // Invalidate our old position
        invalidate(sizeChanged);

        mLeft = left;
        mTop = top;
        mRight = right;
        mBottom = bottom;
        mRenderNode.setLeftTopRightBottom(mLeft, mTop, mRight, mBottom);

        mPrivateFlags |= PFLAG_HAS_BOUNDS;

        // 如果尺寸改变了,调用sizeChange方法,这里面会调用onSizeChanged方法
        if (sizeChanged) {
            sizeChange(newWidth, newHeight, oldWidth, oldHeight);
        }
        
        if ((mViewFlags & VISIBILITY_MASK) == VISIBLE || mGhostView != null) {
            // If we are visible, force the DRAWN bit to on so that
            // this invalidate will go through (at least to our parent).
            // This is because someone may have invalidated this view
            // before this call to setFrame came in, thereby clearing
            // the DRAWN bit.
            mPrivateFlags |= PFLAG_DRAWN;
            invalidate(sizeChanged);
            // parent display list may need to be recreated based on a change in the bounds
            // of any child
            invalidateParentCaches();
        }

        // Reset drawn bit to original value (invalidate turns it off)
        mPrivateFlags |= drawn;

        mBackgroundSizeChanged = true;
        if (mForegroundInfo != null) {
            mForegroundInfo.mBoundsChanged = true;
        }

        notifySubtreeAccessibilityStateChangedIfNeeded();
    }
    return changed;
}

FrameLayout.java
@Override
protected void onLayout(boolean changed, int left, int top, int right, int bottom) {
    layoutChildren(left, top, right, bottom, false /* no force left gravity */);
}
FrameLayout.java
void layoutChildren(int left, int top, int right, int bottom, boolean forceLeftGravity) {
    final int count = getChildCount();
    // 获得当前View的四个可布局的点
    final int parentLeft = getPaddingLeftWithForeground();
    final int parentRight = right - left - getPaddingRightWithForeground();

    final int parentTop = getPaddingTopWithForeground();
    final int parentBottom = bottom - top - getPaddingBottomWithForeground();

    for (int i = 0; i < count; i++) {
        final View child = getChildAt(i);
        if (child.getVisibility() != GONE) {
            final LayoutParams lp = (LayoutParams) child.getLayoutParams();

            final int width = child.getMeasuredWidth();
            final int height = child.getMeasuredHeight();

            int childLeft;
            int childTop;

            int gravity = lp.gravity;
            if (gravity == -1) {
                gravity = DEFAULT_CHILD_GRAVITY;
            }
            // 获得布局的方向,如果没有设置flag PFLAG2_LAYOUT_DIRECTION_RESOLVED_RTL,则为从左到右布局
            // 右到左布局在有些国家会出现这种情况
            final int layoutDirection = getLayoutDirection();
            // 获得当前布局的绝对显示位置,这里会根据布局方向来设置具体是从左边开始还是右边开始
            final int absoluteGravity = Gravity.getAbsoluteGravity(gravity, layoutDirection);
            // 垂直方法的显示位置
            final int verticalGravity = gravity & Gravity.VERTICAL_GRAVITY_MASK;
            // 水平方向显示位置的设置
            switch (absoluteGravity & Gravity.HORIZONTAL_GRAVITY_MASK) {
                // 水平居中
                case Gravity.CENTER_HORIZONTAL:
                    childLeft = parentLeft + (parentRight - parentLeft - width) / 2 +
                    lp.leftMargin - lp.rightMargin;
                    break;
                // 从右边开始
                case Gravity.RIGHT:
                    if (!forceLeftGravity) {
                        childLeft = parentRight - width - lp.rightMargin;
                        break;
                    }
                // 左边和默认的情况都是左边开始布局
                case Gravity.LEFT:
                default:
                    childLeft = parentLeft + lp.leftMargin;
            }
            // 垂直方向的布局
            switch (verticalGravity) {
                // 顶部开始
                case Gravity.TOP:
                    childTop = parentTop + lp.topMargin;
                    break;
                // 垂直居中
                case Gravity.CENTER_VERTICAL:
                    childTop = parentTop + (parentBottom - parentTop - height) / 2 +
                    lp.topMargin - lp.bottomMargin;
                    break;
                // 底部开始
                case Gravity.BOTTOM:
                    childTop = parentBottom - height - lp.bottomMargin;
                    break;
                // 默认顶部开始
                default:
                    childTop = parentTop + lp.topMargin;
            }
            // 子View布局
            child.layout(childLeft, childTop, childLeft + width, childTop + height);
        }
    }
}

img_b305c457dfcb7d1da784c999ceaf5cbe.png
layout流程图

         layout的过程就是确定当前View的 left、top、right、bottom这四个点位置,通过这四个点可以确定这个View的位置,从而在绘制的时候正确绘制。layout的过程和measure的过程不同,layout的过程是先确定自己的位置在确定其子View的位置。

3. draw

draw过程在之前的Activity显示到Window的过程中有写到过,在整个过程中,会调用View的draw方法:

public void draw(Canvas canvas) {
    final int privateFlags = mPrivateFlags;
    final boolean dirtyOpaque = (privateFlags & PFLAG_DIRTY_MASK) == PFLAG_DIRTY_OPAQUE &&
            (mAttachInfo == null || !mAttachInfo.mIgnoreDirtyState);
    mPrivateFlags = (privateFlags & ~PFLAG_DIRTY_MASK) | PFLAG_DRAWN;

    /*
     * Draw traversal performs several drawing steps which must be executed
     * in the appropriate order:
     *
     *      1. Draw the background
     *      2. If necessary, save the canvas' layers to prepare for fading
     *      3. Draw view's content
     *      4. Draw children
     *      5. If necessary, draw the fading edges and restore layers
     *      6. Draw decorations (scrollbars for instance)
     */

    // Step 1, draw the background, if needed
    int saveCount;
    
    if (!dirtyOpaque) {
        // 绘制背景
        drawBackground(canvas);
    }
    // 通常来算是跳过2和5部分。这里只看下跳过2和5部分时,整个流程
    // skip step 2 & 5 if possible (common case)
    final int viewFlags = mViewFlags;
    boolean horizontalEdges = (viewFlags & FADING_EDGE_HORIZONTAL) != 0;
    boolean verticalEdges = (viewFlags & FADING_EDGE_VERTICAL) != 0;
    if (!verticalEdges && !horizontalEdges) {
        // Step 3, draw the content
        // 调用onDraw方法,去绘制内容
        if (!dirtyOpaque) onDraw(canvas);
        
        // 分发绘制事件
        // Step 4, draw the children
        dispatchDraw(canvas);

        // Overlay is part of the content and draws beneath Foreground
        if (mOverlay != null && !mOverlay.isEmpty()) {
            mOverlay.getOverlayView().dispatchDraw(canvas);
        }
        
        // 绘制装饰内容
        // Step 6, draw decorations (foreground, scrollbars)
        onDrawForeground(canvas);

        // we're done...
        return;
    }

    ......
}

从代码中我们可以了解到,整个绘制过程一共有6步,但是通常来说第2步和第5步不会调用:

  1. 绘制背景 drawBackground
  2. 保存画布图层
  3. 绘制内容 onDraw
  4. 分发绘制事件(绘制子View) dispatchDraw
  5. 绘制并恢复图层
  6. 绘制装饰 onDrawForeground

3.1 drawBackground

private void drawBackground(Canvas canvas) {
    final Drawable background = mBackground;
    // 背景为空,直接返回
    if (background == null) {
        return;
    }
    // 设置背景的边界值
    setBackgroundBounds();

    // Attempt to use a display list if requested.
    if (canvas.isHardwareAccelerated() && mAttachInfo != null
            && mAttachInfo.mHardwareRenderer != null) {
        mBackgroundRenderNode = getDrawableRenderNode(background, mBackgroundRenderNode);

        final RenderNode renderNode = mBackgroundRenderNode;
        if (renderNode != null && renderNode.isValid()) {
            setBackgroundRenderNodeProperties(renderNode);
            ((DisplayListCanvas) canvas).drawRenderNode(renderNode);
            return;
        }
    }
    
    // 滚动的x和y值
    final int scrollX = mScrollX;
    final int scrollY = mScrollY;
    // 没有滚动,直接绘制
    if ((scrollX | scrollY) == 0) {
        background.draw(canvas);
    } else {
        // 将canvas移动后再绘制
        canvas.translate(scrollX, scrollY);
        background.draw(canvas);
        canvas.translate(-scrollX, -scrollY);
    }
}

void setBackgroundBounds() {
    // 如果背景尺寸改变并且背景不为空,这设置其边界为0,0,width,height
    if (mBackgroundSizeChanged && mBackground != null) {
        mBackground.setBounds(0, 0, mRight - mLeft, mBottom - mTop);
        mBackgroundSizeChanged = false;
        rebuildOutline();
    }
}

        drawBackground方法比较简单,总体来说就是绘制View的背景,当然根据背景是否存在,是否页面滚动了来绘制背景。

3.2 onDraw

         onDraw是没有具体实现的内容,一般来说在自定义View的时候,很多时候会重写onDraw方法来绘制真正要实现的内容。

3.3 dispatchDraw

        从注释来看,dispatchDraw作为绘制子View的开始,其在View中是空实现。在ViewGroup中有dispatchDraw方法的具体实现:

ViewGroup.java
// 我们只关注如何绘制childView,内容省略了一大部分
// 这里面可以看到会调用drawChild去绘制其子View
@Override
protected void dispatchDraw(Canvas canvas) {
    ......
    // 我们只关注如何绘制childView
    for (int i = 0; i < childrenCount; i++) {
        while (transientIndex >= 0 && mTransientIndices.get(transientIndex) == i) {
        ......

        final int childIndex = getAndVerifyPreorderedIndex(childrenCount, i, customOrder);
        final View child = getAndVerifyPreorderedView(preorderedList, children, childIndex);
        if ((child.mViewFlags & VISIBILITY_MASK) == VISIBLE || child.getAnimation() != null) {
            // 绘制其子View
            more |= drawChild(canvas, child, drawingTime);
        }
    }
    ......
}
ViewGroup.java
// 子View会调用其返回值为boolean的draw方法去绘制
protected boolean drawChild(Canvas canvas, View child, long drawingTime) {
    return child.draw(canvas, this, drawingTime);
}
View.java
boolean draw(Canvas canvas, ViewGroup parent, long drawingTime) {
    // 关于硬件加速模式
    ......
    // 动画相关
    ......
    
    // 硬件加速相关,通过updateDisplayListIfDirty获取显示列表的renderNode最后下面绘制
    if (drawingWithRenderNode) {
        // Delay getting the display list until animation-driven alpha values are
        // set up and possibly passed on to the view
        renderNode = updateDisplayListIfDirty();
        if (!renderNode.isValid()) {
            // Uncommon, but possible. If a view is removed from the hierarchy during the call
            // to getDisplayList(), the display list will be marked invalid and we should not
            // try to use it again.
            renderNode = null;
            drawingWithRenderNode = false;
        }
    }
    ......
    // 如果使用缓存去绘制,则通过cache绘制,否则还是会调用View的draw(canvas)方法绘制
    if (!drawingWithDrawingCache) {
        // 硬件加速的话通过drawRenderNode去绘制,在之前讲过了最后会调用View的draw(canvas)方法绘制
        if (drawingWithRenderNode) {
            mPrivateFlags &= ~PFLAG_DIRTY_MASK;
            ((DisplayListCanvas) canvas).drawRenderNode(renderNode);
        } else {
            // Fast path for layouts with no backgrounds
            // 无背景的快速绘制
            if ((mPrivateFlags & PFLAG_SKIP_DRAW) == PFLAG_SKIP_DRAW) {
                mPrivateFlags &= ~PFLAG_DIRTY_MASK;
                // 
                dispatchDraw(canvas);
            } else {
                // 调用View的draw(canvas)方法绘制
                draw(canvas);
            }
        }
    } else if (cache != null) {
        mPrivateFlags &= ~PFLAG_DIRTY_MASK;
        if (layerType == LAYER_TYPE_NONE || mLayerPaint == null) {
            // no layer paint, use temporary paint to draw bitmap
            Paint cachePaint = parent.mCachePaint;
            if (cachePaint == null) {
                cachePaint = new Paint();
                cachePaint.setDither(false);
                parent.mCachePaint = cachePaint;
            }
            cachePaint.setAlpha((int) (alpha * 255));
            canvas.drawBitmap(cache, 0.0f, 0.0f, cachePaint);
        } else {
            // use layer paint to draw the bitmap, merging the two alphas, but also restore
            int layerPaintAlpha = mLayerPaint.getAlpha();
            if (alpha < 1) {
                mLayerPaint.setAlpha((int) (alpha * layerPaintAlpha));
            }
            canvas.drawBitmap(cache, 0.0f, 0.0f, mLayerPaint);
            if (alpha < 1) {
                mLayerPaint.setAlpha(layerPaintAlpha);
            }
        }
    }

    ......
    return more;
}

        绘制子View的过程要相对繁琐一些,通过View的另一个draw方法来绘制子View,并且这个方法包括了动画相关,硬件加速相关。上面的代码有一部分省略了,其中比较重要的是两个地方:

  1. 硬件加速相关过程:在之前的Activity显示到Window的过程中有写到过,主要是通过updateDisplayListIfDirty方法获取显示列表的renderNode最后通过硬件加速绘制。
  2. 软件绘制过程:需要判断是否使用缓存,如果使用缓存的话,直接绘制缓存,否则的话还需要按照上面的绘制流程一步步进行。

3.4 onDrawForeground

        看这个名称可以认为是绘制前景,其中包括了滚动条、滚动指示器等。当然了,可以通过重写这个方法去绘制任何想要的前景。

public void onDrawForeground(Canvas canvas) {
    // 滚动指示器绘制
    onDrawScrollIndicators(canvas);
    // 滚动条绘制
    onDrawScrollBars(canvas);
    // 前景
    final Drawable foreground = mForegroundInfo != null ? mForegroundInfo.mDrawable : null;
    if (foreground != null) {
        if (mForegroundInfo.mBoundsChanged) {
            mForegroundInfo.mBoundsChanged = false;
            final Rect selfBounds = mForegroundInfo.mSelfBounds;
            final Rect overlayBounds = mForegroundInfo.mOverlayBounds;

            if (mForegroundInfo.mInsidePadding) {
                selfBounds.set(0, 0, getWidth(), getHeight());
            } else {
                selfBounds.set(getPaddingLeft(), getPaddingTop(),
                        getWidth() - getPaddingRight(), getHeight() - getPaddingBottom());
            }

            final int ld = getLayoutDirection();
            Gravity.apply(mForegroundInfo.mGravity, foreground.getIntrinsicWidth(),
                    foreground.getIntrinsicHeight(), selfBounds, overlayBounds, ld);
            foreground.setBounds(overlayBounds);
        }
        
        // 前景的绘制
        foreground.draw(canvas);
    }
}

3.5 绘制顺序

这里还是使用扔物线大神的一张图来表示绘制顺序吧。

img_4a114c1ef1a9266fea1f7c5273152f69.jpe
绘制顺序.jpg

3.6 draw的总结

        整个绘制过程是一个自上向下的过程,在这个过程中先绘制自身的背景(drawBackground)内容(onDraw),接着绘制子View(dispatchDraw)。子View的绘制过程又和上面的过程一样,当所有的子View绘制完成后,会执行装饰的绘制(onDrawForeground)

写在后面的话

        还是按照计划来的,整个流程已经写到了测量、布局和绘制的过程。总体来说感觉网上有些资料还是不够靠谱,如果自己不去看一遍的话,可能会有许多坑等着你来填。


img_c7a3e17f1ed65eac68bd50010e549fc2.png
Go
目录
相关文章
|
6月前
|
XML 前端开发 数据可视化
View的绘制流程
View的绘制流程
43 1
|
6月前
|
调度 Android开发
自定义View之理解测量onMeasure和布局onLayout过程
自定义View之理解测量onMeasure和布局onLayout过程
61 0
|
XML Android开发 数据格式
控件布局(View)叠加效果
控件布局(View)叠加效果
|
前端开发 API
View的测量、布局和绘制过程中的关键方法
我们这里说的View的测量、布局和绘制,实质上是针对ViewGroup的,简单起见就不区分View和ViewGroup。View的测量、布局和绘制是包含在ViewGroup流程中的。
|
前端开发 容器
View的测量、布局和绘制过程中父View(当前View)和子View的先后顺序
View的测量、布局和绘制过程中,到底是先测量(布局、绘制)父View,还是先测量子View,这篇文章会从源码角度给出答案。
|
Android开发 异构计算
Android图形显示系统——下层显示4:图层合成上(合成原理与3D合成)
Android显示之图层合成 要点 1.图层合成指综合各个窗口的绘制内容,送往LCD显示的过程。从原理上可分为在线合成与离线合成两种方式。 2.在Android的SurfaceFlinger代码流程中,图层合成方式分3D合成(OpenGL)和硬件合成两大类。 3.图形系统采用垂直同步Vsync机制,由LCD上报vsync,触发图层合成。 图层合成的原理
5977 0
|
Linux Android开发 开发者
Android窗口管理分析(1):View如何绘制到屏幕上的主观理解
Android窗口管理分析(1):View如何绘制到屏幕上的主观理解
266 0
Android窗口管理分析(1):View如何绘制到屏幕上的主观理解
|
前端开发 Android开发 开发者
【Android 性能优化】布局渲染优化 ( 过渡绘制 | 自定义控件过渡绘制 | 布局文件层次深 | GPU 过渡绘制调试工具 | 背景过度绘制 )(一)
【Android 性能优化】布局渲染优化 ( 过渡绘制 | 自定义控件过渡绘制 | 布局文件层次深 | GPU 过渡绘制调试工具 | 背景过度绘制 )(一)
375 0
【Android 性能优化】布局渲染优化 ( 过渡绘制 | 自定义控件过渡绘制 | 布局文件层次深 | GPU 过渡绘制调试工具 | 背景过度绘制 )(一)
|
前端开发 Android开发
【Android 应用开发】Canvas 绘制文字 ( 文字尺寸测量 | 基线绘制 )
【Android 应用开发】Canvas 绘制文字 ( 文字尺寸测量 | 基线绘制 )
277 0
【Android 应用开发】Canvas 绘制文字 ( 文字尺寸测量 | 基线绘制 )