Opencv获取身份证号码区域

简介: 记得应该是16年的时候,从一个公开课看到了关于OCR方面的内容,里面讲到了通过OpenCV对身份证号码区域的剪裁以及使用Tess-Two进行文字识别,实现了对身份证号码的识别功能。

记得应该是16年的时候,从一个公开课看到了关于OCR方面的内容,里面讲到了通过OpenCV对身份证号码区域的剪裁以及使用Tess-Two进行文字识别,实现了对身份证号码的识别功能。
断断续续看了点关于OpenCV的资料,感觉不是这个专业的真难看懂,各种公式各种名词。今天主要用于做个记录,那个一直碎碎念的东西终于完成了!

原理

我理解的原理(除去文字识别):

  1. 对图片进行降噪以及二值化,凸显内容区域
  2. 对图片进行轮廓检测
  3. 对轮廓结果进行分析
  4. 剪裁指定区域

代码实现

本文采用VS2017实现,代码如下:

#include "stdafx.h"
#include "idocr.h"
#include <opencv2/opencv.hpp>
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv;
using namespace std;
void dealImg(char * path)
{
    Mat src = imread(path);
    // 结果图
    Mat dst;
    // 显示原图
    imshow("原图", src);

    cvtColor(src, dst, COLOR_RGB2GRAY);
    // 高斯模糊,主要用于降噪
    GaussianBlur(dst, dst, Size(3, 3), 0);
    imshow("GaussianBlur图", dst);
    // 二值化图,主要将灰色部分转成白色,使内容为黑色
    threshold(dst, dst, 165, 255, THRESH_BINARY);
    imshow("threshold图", dst);
    // 中值滤波,同样用于降噪
    medianBlur(dst, dst, 3);
    imshow("medianBlur图", dst);
    // 腐蚀操作,主要将内容部分向高亮部分腐蚀,使得内容连接,方便最终区域选取
    erode(dst, dst, Mat(9, 9, CV_8U));
    imshow("erode图", dst);

    //定义变量
    vector<vector<Point>> contours;
    vector<Vec4i> hierarchy;
    findContours(dst, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);

    Mat result;

    for (int i = 0; i < hierarchy.size(); i++)
    {

        Rect rect = boundingRect(contours.at(i));
        rectangle(src, rect, Scalar(255, 0, 255));
        // 定义身份证号位置大于图片的一半,并且宽度是高度的6倍以上
        if (rect.y > src.rows / 2 && rect.width / rect.height > 6)
        {
            result = src(rect);
            imshow("身份证号", result);
        }
    }

    imshow("轮廓图", src);
}

详细步骤:

  1. 载入原图
  2. 将原图转为灰度图
  3. 使用高斯模糊进行第一次降噪
  4. 将图片二值化
  5. 使用中值滤波进行降噪
  6. 腐蚀操作,主要将内容部分向高亮部分腐蚀,使得内容连接,方便最终轮廓检测
  7. 轮廓检测,获得所有轮廓
  8. 定义身份证号位置大于图片的一半,并且宽度是高度的6倍以上,并剪裁该区域

结果

对于身份证比较正的图片位置识别的还算是挺正确的,但是如果图片不正,那么第一步就应该对图片进行较正,无奈我是菜鸡。下面是网上搜的一个假身份证图片:


img_d3e04c1c7a7f43fe438fcb5d0a86a3b9.png
原图
img_878e1994352ed1851c69e13dcb99f4ff.png
轮廓检测图
img_f9ed459843be7604c5abf72eccd6581a.png
剪裁结果图
目录
相关文章
|
计算机视觉
基于OpenCV实现对图片及视频中感兴趣区域颜色识别
基于OpenCV实现对图片及视频中感兴趣区域颜色识别
基于OpenCV实现对图片及视频中感兴趣区域颜色识别
|
C++ 计算机视觉
opencv之颜色过滤只留下图片中的红色区域
如图,这次需要在图片中找到卷尺的红色刻度,所以需要对图像做过滤,只留下红色部分。 一开始的想法是分别找到RGB值,然后找到红色区域的部分保留就可以了,不过好像很难确定红色区域的RGB取值范围,所以要把图片转化到HSV空间中去。
5728 0
|
计算机视觉
在OpenCV中利用鼠标绘制矩形和截取图像的矩形区域
这是两个相关的程序,前者是后者的基础。实际上前一个程序也是在前面博文的基础上做的修改,请参考《在OpenCV中利用鼠标绘制直线》 。下面贴出代码。 程序之一,在OpenCV中利用鼠标绘制矩形 [c-sharp] view plaincopy #include    #include    #include    #pragma comment( lib, "cv.
1094 0
|
计算机视觉
【OpenCV学习】子区域处理
作者:gnuhpc 出处:http://www.cnblogs.com/gnuhpc/ #pragma comment( lib, "cxcore.lib" ) #pragma comment( lib, "cv.
689 0
|
计算机视觉
【OpenCV学习】ROI区域
作者:gnuhpc 出处:http://www.cnblogs.com/gnuhpc/ #include "highgui.h" #include "cv.h" #include void main() { IplImage *src=/blog.
921 0
|
1月前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
332 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
2月前
|
算法 计算机视觉
opencv图像形态学
图像形态学是一种基于数学形态学的图像处理技术,它主要用于分析和修改图像的形状和结构。
49 4
|
2月前
|
存储 计算机视觉
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
本文介绍了使用OpenCV进行图像读取、显示和存储的基本操作,以及如何绘制直线、圆形、矩形和文本等几何图形的方法。
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制