数据结构(十):最小生成树

简介: 最小生成树是带权无向连通图中权值最小的生成树,根据图中生成树定义可知, 个顶点的连通图中,生成树中边的个数为 ,向生成树中添加任意一条边,则会形成环。

最小生成树是带权无向连通图中权值最小的生成树,根据中生成树定义可知,|V| 个顶点的连通图中,生成树中边的个数为 |V|-1,向生成树中添加任意一条边,则会形成环。生成树存在多种,其中权值之和最小的生成树即为最小生成树。

最小生成树保证最小权值是固定的,但是最小生成树可能有多个。

A 为最小生成树 MST 的一个真子集,即 A 的顶点集合和边集合都是 MST 的顶点和边集合的子集,构造最小生成树过程为向 A 中添加顶点和边,添加的原则有两种:

  1. 选择 A 的边集合外,权值最小的边,加入到 A

添加边的过程需要避免形成环。

  1. 选择 A 的顶点集合外,距离 A 最近的顶点,加入到 A

距离 A 最近的点,即和 A 中的顶点形成最小权值边的非 A 中的某个顶点。

kruskal 算法

kruskal 算法即为上述第一种原则,通过选择图中的最小权值边来构造最小生成树,过程中需要注意避免形成环。

算法过程
  1. 对边集合进行排序
  2. 选择最小权值边,若不构成环,则添加到集合 A
  3. 重复执行步骤 2,直到添加 |V|-1 条边
演示示例
graph

step 1:
最小权值边为顶点 7、8 形成的边

step 2:
最小权值边为顶点 3、9 形成的边

step 3:
最小权值边为顶点 6、7 形成的边

step 4:
最小权值边为顶点 3、6 形成的边

step 5:
最小权值边为顶点 1、2 形成的边

step 6:
最小权值边为顶点 3、4 形成的边

step 7:
最小权值边为顶点 1、8 形成的边

step 8:
最小权值边为顶点 4、5 形成的边

最小生成树的权值之和为 37

算法示例

这里使用邻接表作为图的存储结构

  1. kruskal 算法示例
def kruskal(graph):
    edges, vertices = getEdgesFromAdjacencyList(graph), [i for i in range(graph.number)]
    sort(edges, 0, len(edges) - 1)
    weightSum, edgeNumber = 0, 0
    while edgeNumber < graph.number - 1:
        edge = edges.pop()
        beginOrigin, endOrigin = origin(vertices, edge.begin - 1), origin(vertices, edge.end - 1)
        if (beginOrigin != endOrigin): # whether the two vertices belong to same graph
            vertices[beginOrigin] = endOrigin  # identify the two vertices in the same sub graph
            weightSum, edgeNumber = weightSum + edge.weight, edgeNumber + 1  # calculate the total weight

这里使用 getEdgesFromAdjacencyList 函数完成邻接表到边集合的转换,使用快排 sort 完成对边集合的排序,使用 origin 函数返回每个子图的根。

kruskal 算法设定最初每个顶点都是一个子图,每个子图都有一个根,或者称之为出发点,每个加入的顶点都保留一个指向上一个顶点的引用,并最终追溯到该子图的根顶点,所以可以通过判断两个顶点指向的根顶点是否相同,来判断两顶点是否属于同一个子图。

  1. 邻接表转边集合
def getEdgesFromAdjacencyList(graph):
    edges = []
    for i in range(graph.number):
        node = graph.list[i]
        while node:
            edge, node = Edge(i + 1, node.index, node.weight), node.next
            edges.append(edge)
    return edges

因为使用邻接表向边进行转化,且后续只对边集合进行处理,所以在测试时候,无向图中的每条边,只需要记录一次即可,不需要对于边的两个顶点,分别记录一次。

  1. 判断两个顶点是否属于同一个子图,避免添加边后形成环
def origin(vertices, index):
    while vertices[index] != index:
        index = vertices[index]
    return index

该函数返回顶点 index 所属子图的根顶点,其中 vertices[index] 位置上存储的是顶点 index 的上一个顶点,每个子图中,根顶点的上一个顶点为自身。

性能分析

kruskal 算法中使用 getEdgesFromAdjacencyList 函数完成邻接表向边集合的转换,函数内部存在两层循环,访问邻接表中每个顶点的相邻顶点,复杂度为 O(log|E|)。使用快排对边集合进行排序,时间复杂度为 O(|E|log |E|),因为 |E| \lt |V|^2,所以快排时间复杂度可以表述为 O(|E|log |V|)kruskal 算法中 while 循环取最小权值边,并对边的两个顶点执行 origin 函数判断是否属于同一个子图,时间复杂度为 O(|E|log |V|)。所以 kruskal 算法的时间复杂度为 O(|E|log |V|)

prim 算法

kruskal 算法的过程为不断对子图进行合并,直到形成最终的最小生成树。prim 算法的过程则是只存在一个子图,不断选择顶点加入到该子图中,即通过对子图进行扩张,直到形成最终的最小生成树。

扩张过程中选择的顶点,是距离子图最近的顶点,即与子图中顶点形成的边是权值最小的边。

算法过程
  1. 按照距离子图的远近,对顶点集合进行排序
  2. 选择最近的顶点加入到子图中,并更新相邻顶点对子图的距离
  3. 重复执行步骤 2,直到顶点集合为空
演示示例
graph

这里不妨以顶点 5 作为子图中的第一个顶点

step 1:
距离子图的最近顶点为 4

step 2:
距离子图的最近顶点为 3

step 3:
距离子图的最近顶点为 9

step 4:
距离子图的最近顶点为 6

step 5:
距离子图的最近顶点为 7

step 6:
距离子图的最近顶点为 8

step 7:
距离子图的最近顶点为 2

step 8:
距离子图的最近顶点为 1

最小生成树的权值之和为 37

算法示例

这里使用邻接表作为图的存储结构

  1. prim 算法示例
def prim(graph, index):
    vertices, verticesIndex = [{'index': i, 'weight': None} for i in range(graph.number)], [i for i in range(graph.number)]
    weightSum, vertices[index - 1]['weight'] = 0, 0
    heapSort(vertices, verticesIndex)
    while len(vertices) > 0:
        swapVertices(vertices, verticesIndex, 0, -1)
        vertex = vertices.pop()
        transformToHeap(vertices, verticesIndex, 0, len(vertices))
        weightSum = weightSum + vertex['weight']
        updateVertices(graph, vertices, verticesIndex, vertex['index'])

这里使用 vertices 列表存储每个顶点元素,每个元素包括两个属性,index 为顶点下标,weight 为顶点距离子图的大小。算法中使用 verticesIndex 列表存储每个顶点元素在 vertices 列表中的下标位置。使用 heapSort 堆排序对每个顶点到子图的距离进行排序,即对 vertices 列表进行排序,使用堆排序内的 transformToHeap 函数调整 vertices 列表为小顶堆。当添加新顶点到子图后,使用 updateVertices 函数完成对相邻顶点的距离更新。

因为对 vertices 列表排序后,每个顶点元素在 vertices 列表的下标值不能表示该顶点的编号,而后续添加新顶点后,在更新相邻顶点距离的操作中,为了避免查找相邻顶点而遍历整个列表,需要根据顶点编号进行直接访问相邻顶点,所以借助 verticesIndex 列表存储每个顶点元素在 vertices 列表中的位置。例如要更新顶点 v 的距离,则 verticesIndex[v] 值为顶点 vvertices 列表中的位置,v 顶点元素即为 vertices[verticesIndex[v]]

  1. 交换堆顶元素
def swapVertices(vertices, verticesIndex, origin, target):
    vertices[origin], vertices[target] = vertices[target], vertices[origin]
    verticesIndex[vertices[origin]['index']], verticesIndex[vertices[target]['index']] = origin, target

vertices 列表调整为小顶堆之后,将列表首、尾元素交换,则列表尾元素即为距离子图最近的顶点元素。

  1. 添加顶点到子图中后,更新相邻顶点到子图的距离
def updateVertices(graph, vertices, verticesIndex, index):
    node = graph.list[index]
    while node:
        if verticesIndex[node.index - 1] == -1:
            node = node.next
            continue
        vertex = vertices[verticesIndex[node.index - 1]]
        if not vertex['weight'] or (vertex['weight'] and vertex['weight'] > node.weight):
            vertex['weight'] = node.weight
            pos = verticesIndex[vertex['index']]
            while pos > 0 and (not vertices[(pos - 1) // 2]['weight'] or vertices[pos]['weight'] < vertices[(pos - 1) // 2]['weight']):
                swapVertices(vertices, verticesIndex, pos, (pos - 1) // 2)
                pos = (pos - 1) // 2
        node = node.next

对每一个相邻顶点,如果不在子图中,则判断是否更新到子图的距离。

性能分析

prim 算法中构造顶点列表的时间复杂度为 O(|V|)。使用堆排序对顶点列表进行排序,时间复杂度为 O(|V|log |V|)prim 算法中 while 循环取最近顶点元素,并调整元素取出后列表的堆结构,所以总体的调整复杂度为 O(|V|log |V|);同时循环结构内执行 updateVertices 函数,更新每个取出顶点的相邻顶点距离值,所以总体的更新顶点数为 O(|E|),因为每个顶点更新距离后,需要调整堆结构为小顶堆,所以总体的复杂度为 O(|E|log |V|)。所以prim 算法的时间复杂度为 O(|E|log |V|)

代码及测试 github 链接:最小生成树

相关文章
|
6月前
|
算法 Java
Java数据结构与算法:贪心算法之最小生成树
Java数据结构与算法:贪心算法之最小生成树
|
6月前
|
算法 C语言
数据结构与算法——最小生成树问题(什么是最小生成树、Prim算法、Kruskal算法)
数据结构与算法——最小生成树问题(什么是最小生成树、Prim算法、Kruskal算法)
39 0
|
7月前
|
存储 机器学习/深度学习 算法
上机实验三 图的最小生成树算法设计 西安石油大学数据结构
上机实验三 图的最小生成树算法设计 西安石油大学数据结构
96 1
|
7月前
|
存储 算法 C语言
上机实验四 图的最小生成树算法设计 西安石油大学数据结构
上机实验四 图的最小生成树算法设计 西安石油大学数据结构
71 1
|
算法 Java
数据结构(13)最小生成树JAVA版:prim算法、kruskal算法
13.1.概述 最小生成树,包含图的所有顶点的一棵树,树的边采用包含在图中的原有边中权重和最小的边。翻译成人话就是遍历一遍全图所有顶点的最短路径,这条路径就叫最小生成树。 最小生成树存在和图是连通图互为充要条件,顶点都不连通,肯定不可能有路能遍历一遍全图。 求解最小生成树有两种常用算法:
180 0
|
存储 算法 Java
【Java高阶数据结构】并查集-最小生成树
Java高阶数据结构 & 并查集 & 最小生成树 1. 并查集 1.1 并查集的原理 在一些应用问题中,我们常常会遇到一类问题 一开始是一个人 后来新增的人可能与这个人有关系,也可能与这个人无关系。 一个人与一个人有关系,这个人与另一个人也有关系,那么三人都有关系。 有关系的和没关系的之间是不同的类别。
118 0
|
算法
大话数据结构--最小生成树的基本概念
大话数据结构--最小生成树的基本概念
163 0
【数据结构与算法】最小生成树 | 最短路径(下)
【数据结构与算法】最小生成树 | 最短路径(下)
【数据结构与算法】最小生成树 | 最短路径(下)
|
存储 算法
【数据结构与算法】最小生成树 | 最短路径(上)
【数据结构与算法】最小生成树 | 最短路径(上)
【数据结构与算法】最小生成树 | 最短路径(上)
|
存储 人工智能 算法
数据结构学习笔记——图的应用1(最小生成树、最短路径)
数据结构学习笔记——图的应用1(最小生成树、最短路径)
数据结构学习笔记——图的应用1(最小生成树、最短路径)