如何搭建一个用于AI预测的Python环境

简介:

2017年人工智能的火把Python烧的热血沸腾,听说很多公司因为Python开发人员需求暴涨导致的薪资上升而不得不切换到其他语言上去。PS:好像需求爆涨和薪资上升都跟我没沾上半点关系,还是苦逼一个,:)

既然如此,我们这些与AI不相干的Pythoner也来蹭一蹭Python人工智能这团火,看看能不能从中取一点暖。所以就有了这套《Python 极简入门》的文章。

没敢称之为“教程”,是因为本来就是个半吊子,然后又讲一个半吊子的东西,纯属自娱自乐,入不了专业AI人士的法眼(专业人士可以绕过了)。

又因为是半吊子讲半吊子的东西,所以整套文章不会有公式和算法的详细讲解(专业人士可以再次绕过了),我们从不生产算法,我们只是机器学习库的搬运工。

不要介意做一个调库侠,工具的发明本来就是为了降低某些操作的难度,还不是专业人士,暂且不用自己创造改造算法,轮子太多,拣着合适的用就行。废话不多说,开始~

创建一个Virtual虚拟环境

为了不与本地的Python 环境有冲突,我们使用virtualenv模块创建一个新的Python虚拟环境:

 

virtualenv python_ai

如下图所示,安装完成:

531d1453ac18ebfa524db57c7f06b9f34f4202a8

接着启动python_ai这个虚拟环境:

 

Scriptsactivate

7f32c1ccbe45e40d7b7c4afd36dd3f14bdfe0839

安装所需的模块

进入python_ai这个虚拟环境之后,我们来安装所需要的模块,其中主要有:

 ●  numpy:用于科学计算的基本模块
 ●  scipy:科学计算工具箱
 ●  pandas:数据分析和处理模块
 ●  scikit-learn:机器学习经典算法的集成包
 ●  nltk:自然语言处理模块
 ●  jieba:中文分词模块
 ●  jupyter:一个交互式的笔记本,我们的代码的主战场

其他没有列出的模块,在后面的文章中有使用时会提及大家安装。大部分模块都可以使用pip命令直接安装完成,少部分使用pip命令直接安装不了的,可以通过https://www.lfd.uci.edu/~gohlke/pythonlibs/ 网站下载模块的whl文件,再通过pip命令安装这些whl文件。

 

pip install pandas

安装pandas模块会附带安装上pandas的依赖库,其中包括Numpy等:

6b5eafc3da1ba9835f298a74821cea335dbf57da

 

pip install scikit-learn

使用pip命令也可直接安装scikit-learn:

045e4fb9ca88c37852f691d534b92b234dbc8a72

 

pip install scipy

scipy模块也能通过pip直接安装完成:

ee4d03d608f2f3574a9596c2d980c94ff02d3531

 

pip install jupyter

jupyter的依赖库很多,但也能顺利通过pip命令安装完成:

f89661276c496d2bed2a1c94f25c6928e1451238

接下来是jiaba和nltk模块,都能够顺利安装:

ed4598d244cd75ac813083d47c42dfa8d39304b9

测试模块

模块安装好之后,我们来测试一下这些模块的安装是否正确。在命令行输入命令:

 

jupyter notebook

以启动jupyter笔记本:

7fc4d8753cd645cff38a55cc4e2b655b8dd6f84d

在Home页面新建一个Python3的notebook:

99d0100707d2edeb578116ce8f189894dca6cce7

在新的notebook中导入刚刚安装好的模块,并打印其版本号:

 

import numpy as np
import pandas as pd
import scipy
import sklearn
import nltk
import jiaba
print(np.__version__)
print(pd.__version__)
print(scipy.__version__)
print(sklearn.__version__)
print(nltk.__version__)
print(jieba.__version__)

结果成功显示,没有报错:

94ce16013fbe67a2db42ceb56eba3d47da81f622

这样,我们用于Python AI预测的环境就搭建好了

下一节,我们将介绍机器学习的工作流程


原文发布时间为:2018-10-30

本文作者:州的先生

本文来自云栖社区合作伙伴“Python爱好者社区”,了解相关信息可以关注“Python爱好者社区”。

相关文章
|
1月前
|
存储 人工智能 安全
《Confidential MaaS 技术指南》发布,从 0 到 1 构建可验证 AI 推理环境
Confidential MaaS 将从前沿探索逐步成为 AI 服务的安全标准配置。
|
2月前
|
机器学习/深度学习 人工智能 资源调度
智能家居环境中的AI决策解释:实现以人为中心的可解释性——论文阅读
本文探讨智能家居中AI决策的可解释性,提出以人为中心的XAI框架。通过SHAP、DeepLIFT等技术提升模型透明度,结合用户认知与需求,构建三层解释体系,增强信任与交互效能。
231 19
智能家居环境中的AI决策解释:实现以人为中心的可解释性——论文阅读
|
2月前
|
人工智能 数据安全/隐私保护 异构计算
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
374 8
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
|
4月前
|
人工智能 数据安全/隐私保护 Python
小红书图文生成器,小红书AI图文生成工具,python版本软件
Pillow库自动生成符合平台尺寸要求的配图7;3)利用Playwright实现自动化发布流程6。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
python编写AI生常用匡架及使用指令集
本文介绍Python中常用AI框架,包括TensorFlow、PyTorch、Scikit-learn、Hugging Face、spaCy、OpenCV及XGBoost等,涵盖安装指令与基础代码示例,适用于机器学习、深度学习、自然语言处理与计算机视觉等领域,助力快速入门与应用开发。(238字)
303 7
|
2月前
|
设计模式 人工智能 API
AI智能体开发实战:17种核心架构模式详解与Python代码实现
本文系统解析17种智能体架构设计模式,涵盖多智能体协作、思维树、反思优化与工具调用等核心范式,结合LangChain与LangGraph实现代码工作流,并通过真实案例验证效果,助力构建高效AI系统。
410 7
|
3月前
|
人工智能 自然语言处理 安全
Python构建MCP服务器:从工具封装到AI集成的全流程实践
MCP协议为AI提供标准化工具调用接口,助力模型高效操作现实世界。
745 1
|
4月前
|
数据采集 人工智能 API
推荐一款Python开源的AI自动化工具:Browser Use
Browser Use 是一款基于 Python 的开源 AI 自动化工具,融合大型语言模型与浏览器自动化技术,支持网页导航、数据抓取、智能决策等操作,适用于测试、爬虫、信息提取等多种场景。
750 5
推荐一款Python开源的AI自动化工具:Browser Use
|
4月前
|
机器学习/深度学习 人工智能 算法
深度强化学习在异构环境中AI Agent行为泛化能力研究
随着人工智能技术的迅猛发展,AI Agent 在游戏、智能制造、自动驾驶等场景中已逐步展现出强大的自适应能力。特别是深度强化学习(Deep Reinforcement Learning, DRL)的引入,使得智能体能够通过与环境的交互,自动学习最优的行为策略。本文将系统性地探讨基于深度强化学习的AI Agent行为决策机制,并结合代码实战加以说明。
深度强化学习在异构环境中AI Agent行为泛化能力研究
|
4月前
|
人工智能 测试技术 编译器
从 Python 演进探寻 AI 与云对编程语言的推动
Python 自 2008 年发布 3.0 版本以来,经历了持续演进与革新。十六年间,从 Python 3.0 到即将发布的 3.14,语言设计、性能优化、类库生态及虚拟机技术等方面均有显著提升。字符串处理、异步编程、类型系统等核心功能不断现代化,Faster CPython 和 JIT 编译技术推动运行效率飞跃。同时,AI、云计算等新兴技术成为其发展的重要驱动力。本文全面回顾了 Python 的演进历程,并展望未来发展方向。
176 2

推荐镜像

更多
下一篇
oss云网关配置