LaTeX IEEE模板

简介: 因为课程作业的要求需要完成一篇IEEE格式的论文,所以选择入门LaTeX。但是期间遇到了各种各样莫名其妙的坑。前前后后挣扎了两个多星期终于完成了IEEE模板的设置。下面详细记录一下让我深恶痛绝的心路历程。

因为课程作业的要求需要完成一篇IEEE格式的论文,所以选择入门LaTeX。但是期间遇到了各种各样莫名其妙的坑。前前后后挣扎了两个多星期终于完成了IEEE模板的设置。下面详细记录一下让我深恶痛绝的心路历程。

一、软件的选择

网上有很多LaTeX软件,在线编辑器推荐Overleaf。但是我个人还是更喜欢离线写东西,所以尝试过各种编辑器,例如VSCode等等,这些编辑器都需要自己搭环境才能用,反正对于我们这种初学者而言门槛较高,而且浪费时间,所以下面介绍一个LaTeX组合可以让你直接上手体验LaTeX,而不需要挣扎在LaTeX的门口。

要想离线使用LaTeX,首先需要一个编辑器,也就是敲LaTeX的软件,这里强烈推荐 TextStudio这个软件是开源免费的,而且界面是我找过的软件中还过得去的。。因为感觉其他的也都不怎么好看。

但是光有编辑器还不行啊,你还得有编译器,这里推荐使用 MiKTeX怎么理解这个软件的作用呢,就好像你要运行python代码,你得安装官网提供的Python3.6或者Anaconda之后才能编译python代码啊,之前没搞懂这个关系,一直以为跟markdown一样,结果并不是。

所以综上,要想使用LaTeX,你得有编辑器和编译器才行啊。

二、模板

废话不多说直接上模板。模板最初只需要如下三个文件:

  • temp.tex: 保存LaTeX的文件
  • temp.bib: 保存参考文献的文件,其实也可以将参考文献写在*.tex中,但是我个人更喜欢把他们分开,因为这样逻辑更清晰。
  • ieeeconf.cls: IEEE样式模板。

以上文件可在如下网址下载:

最终效果:
img_8038e4e4950b61ab9ba56ff0e7b46c95.png

下面是示例。

1. temp.tex


\documentclass[a4paper, 10pt, conference]{ieeeconf}   
\usepackage[utf8]{inputenc}
\usepackage{dtk-logos} % for BibTeX stylized logo 
\overrideIEEEmargins


\title{\LARGE \bf
The review of Automated Machine learning
}

\author{He Xin$^{1}$ and Wang Zhichun$^{2}$
}

\begin{document}

\maketitle
%\thispagestyle{empty}
%\pagestyle{empty}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{abstract}

Test test testTest test testTest test testTest test test

Test test testTest test testTest test testTest test test


\end{abstract}

\section{INTRODUCTION}

As we all know(\cite{xie_genetic_2017}), deep learning, which has been used in a lot of research fields including image classification, image recognition, machine translation, has achieved remarkable achievements in those tasks. Take the image classification as an example, AlexNet () outperformed traditional computer vision methods on ImageNet (Russakovsky et al., 2015), which was in turn outperformed by VGG nets (Simonyan \& Zisserman, 2015), then ResNets (He et al., 2016) etc.


\section{METHODS}

As we all know(\cite{xie_genetic_2017}), deep learning, which has been used in a lot of research fields including image classification, image recognition, machine translation, has achieved remarkable achievements in those tasks. Take the image classification as an example, AlexNet () outperformed traditional computer vision methods on ImageNet (Russakovsky et al., 2015), which was in turn outperformed by VGG nets (Simonyan \& Zisserman, 2015), then ResNets (He et al., 2016) etc.


\subsection{Bayesian Optimization}

Test test testTest test testTest test testTest test test
As we all know(\cite{xie_genetic_2017}), deep learning, which has been used in a lot of research fields including image classification, image recognition, machine translation, has achieved remarkable achievements in those tasks. Take the image classification as an example, AlexNet () outperformed traditional computer vision methods on ImageNet (Russakovsky et al., 2015), which was in turn outperformed by VGG nets (Simonyan \& Zisserman, 2015), then ResNets (He et al., 2016) etc.



\subsection{Gradient-based}

Test test testTest test testTest test testTest test test
As we all know(\cite{xie_genetic_2017}), deep learning, which has been used in a lot of research fields including image classification, image recognition, machine translation, has achieved remarkable achievements in those tasks. Take the image classification as an example, AlexNet () outperformed traditional computer vision methods on ImageNet (Russakovsky et al., 2015), which was in turn outperformed by VGG nets (Simonyan \& Zisserman, 2015), then ResNets (He et al., 2016) etc.




\subsection{Meta Learning}

Test test testTest test testTest test testTest test test

As we all know(\cite{xie_genetic_2017}), deep learning, which has been used in a lot of research fields including image classification, image recognition, machine translation, has achieved remarkable achievements in those tasks. Take the image classification as an example, AlexNet () outperformed traditional computer vision methods on ImageNet (Russakovsky et al., 2015), which was in turn outperformed by VGG nets (Simonyan \& Zisserman, 2015), then ResNets (He et al., 2016) etc.





\subsection{Evolutionary Algorithm}
Test test testTest test testTest test testTest test test


As we all know(\cite{xie_genetic_2017}), deep learning, which has been used in a lot of research fields including image classification, image recognition, machine translation, has achieved remarkable achievements in those tasks. Take the image classification as an example, AlexNet () outperformed traditional computer vision methods on ImageNet (Russakovsky et al., 2015), which was in turn outperformed by VGG nets (Simonyan \& Zisserman, 2015), then ResNets (He et al., 2016) etc.




\subsection{Reinforcement Learning}


Test test testTest test testTest test testTest test test

Test test testTest test testTest test testTest test test

Test test testTest test testTest test testTest test test



\section{Comparison and Analysis}

Test test testTest test testTest test testTest test test
Test test testTest test testTest test testTest test test

Test test testTest test testTest test testTest test test

\subsection{Units}


Test test testTest test testTest test testTest test test
Test test testTest test testTest test testTest test test

Test test testTest test testTest test testTest test test


\begin{itemize}

\item Test test test
\item Test test test

\end{itemize}



\section{CONCLUSIONS}


Test test testTest test testTest test testTest test test

Test test testTest test testTest test testTest test test

Test test testTest test testTest test testTest test test

\addtolength{\textheight}{-12cm}   % This command serves to balance the column lengths
                                  % on the last page of the document manually. It shortens
                                  % the textheight of the last page by a suitable amount.
                                  % This command does not take effect until the next page
                                  % so it should come on the page before the last. Make
                                  % sure that you do not shorten the textheight too much.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{APPENDIX}

Test test
Test test testTest test testTest test testTest test test

Test test testTest test testTest test testTest test test

\section*{ACKNOWLEDGMENT}

Test test testTest test testTest test testTest test test

Test test testTest test testTest test testTest test test
Test test

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


\nocite{*}
\bibliographystyle{ieeetran}
\bibliography{temp}


\end{document}

2. temp.bib


@article{xie_genetic_2017,
    title = {Genetic {CNN}},
    url = {http://arxiv.org/abs/1703.01513},
    abstract = {The deep Convolutional Neural Network (CNN) is the state-of-the-art solution for large-scale visual recognition. Following basic principles such as increasing the depth and constructing highway connections, researchers have manually designed a lot of fixed network structures and verified their effectiveness.},
    language = {en},
    urldate = {2018-10-22},
    journal = {arXiv:1703.01513 [cs]},
    author = {Xie, Lingxi and Yuille, Alan},
    month = mar,
    year = {2017},
    note = {arXiv: 1703.01513},
    keywords = {Computer Science - Computer Vision and Pattern Recognition},
    file = {Xie 和 Yuille - 2017 - Genetic CNN.pdf:E\:\\Zotero_storage\\storage\\A73TXSBC\\Xie 和 Yuille - 2017 - Genetic CNN.pdf:application/pdf}
}

3. ieeeconf.cls

这个文件太大,建议去上面的链接中下载。




MARSGGBO原创





2018-10-23



目录
相关文章
|
7月前
|
数据库
【latex】在Overleaf的IEEE会议模板中,快速插入参考文献
【latex】在Overleaf的IEEE会议模板中,快速插入参考文献
1563 1
LaTeX基础使用【系列一】
LaTeX基础使用【系列一】
|
自然语言处理 编译器 Linux
【Latex】texstudio使用和ACL论文模板初步解读
LaTeX是一类用于编辑和排版的软件,用于生成PDF文档。 LaTeX编辑和排版的核心思想在于,通过\section和\paragraph等语句,规定了每一句话在文章中所从属的层次,从而极大方便了对各个层次批量处理。 LaTeX在使用体验方
1860 0
【Latex】texstudio使用和ACL论文模板初步解读
|
7月前
|
存储 自然语言处理 编译器
在Overleaf中解决IEEE LaTeX模板不能显示中文问题
在Overleaf中解决IEEE LaTeX模板不能显示中文问题
2908 0
|
7月前
|
前端开发 C++
LaTeX基础使用【系列三】
LaTeX基础使用【系列三】
|
7月前
|
C++
LaTeX基础使用【系列二】
LaTeX基础使用【系列二】
|
7月前
|
Web App开发 存储 数据可视化
LaTeX基础使用【系列五】
LaTeX基础使用【系列五】
|
7月前
|
C++
LaTeX基础使用【系列四】
LaTeX基础使用【系列四】
|
编译器
【LaTeX学习笔记】一文入门LaTeX(超详细)
LaTeX中主要分为导言区和正文区 导言区通常用于定义文档的格式、语言等(全局设置)。常用的LaTex命令主要有\documentclass,\usepackage等。下面分别对几个常用的命令做简单介绍。\documentclass命令是用于设置LaTex文件所生成文档的格式. 其命令语法如下所示: 例如: 意思是正文字体大小为12pt, 页面规格是A4, 使用article文档格式\usepackage命令设置在编译LaTex文件时要导入的扩展包,例如: 1.2.3 封面格式 设置所要生成文档的封
1276 1
【LaTeX学习笔记】一文入门LaTeX(超详细)