阿里云容器Kubernetes监控(八) - 使用Prometheus实现应用自定义监控

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介:

前言

在上一篇文章中为大家讲解了如何在Kubernetes集群中部署Prometheus,已经可以通过Prometheus监控Kubernetes中Pod的状态、核心组件的状态等数据。那么如何将应用自身的数据进行集成呢?

Prometheus数据格式解析

Prometheus是通过pull模式进行数据采集的,如果需要接入Prometheus的数据采集,需要符合Prometheus的数据格式,一个标准的Prometheus格式的监控数据格式如下:

# TYPE rpc_durations_seconds summary
rpc_durations_seconds{service="exponential",quantile="0.5"} 7.55823964126038e-07
rpc_durations_seconds{service="exponential",quantile="0.9"} 2.6110063096397233e-06
rpc_durations_seconds{service="exponential",quantile="0.99"} 4.1856147763703275e-06
rpc_durations_seconds_sum{service="exponential"} 0.00020646687333031658
rpc_durations_seconds_count{service="exponential"} 199
rpc_durations_seconds{service="normal",quantile="0.5"} -9.691909897213225e-07
rpc_durations_seconds{service="normal",quantile="0.9"} 0.00025830474325216625
rpc_durations_seconds{service="normal",quantile="0.99"} 0.0005562243742048893
rpc_durations_seconds_sum{service="normal"} -6.545190575669169e-05
rpc_durations_seconds_count{service="normal"} 134
rpc_durations_seconds{service="uniform",quantile="0.5"} 9.377796898048464e-05
rpc_durations_seconds{service="uniform",quantile="0.9"} 0.00018267981258729418
rpc_durations_seconds{service="uniform",quantile="0.99"} 0.0001955526954715437
rpc_durations_seconds_sum{service="uniform"} 0.009804051013554931
rpc_durations_seconds_count{service="uniform"} 101

表面上这个数据的格式是非常简单的,但实际上,如果我们手动去尝试拼接这样的数据格式,可能会由于特殊字符、命名方式、字符串长度等等不同原因导致Prometheus无法识别。此处我们建议直接使用Prometheus的Client进行注册监控接口。Promehtues的Client目前支持大部分编程语言,支持列表可以参考如下文章。下面我们以Go语言为例,来看下Prometheus Client的用法:

var (
    // Create a summary to track fictional interservice RPC latencies for three
    // distinct services with different latency distributions. These services are
    // differentiated via a "service" label.
    rpcDurations = prometheus.NewSummaryVec(
        prometheus.SummaryOpts{
            Name:       "rpc_durations_seconds",
            Help:       "RPC latency distributions.",
            Objectives: map[float64]float64{0.5: 0.05, 0.9: 0.01, 0.99: 0.001},
        },
        []string{"service"},
    )
)

func init() {
    // Register the summary and the histogram with Prometheus's default registry.
    prometheus.MustRegister(rpcDurations)
}

func main() {
    flag.Parse()

    start := time.Now()

    oscillationFactor := func() float64 {
        return 2 + math.Sin(math.Sin(2*math.Pi*float64(time.Since(start))/float64(*oscillationPeriod)))
    }

    // Periodically record some sample latencies for the three services.
    go func() {
        for {
            v := rand.Float64() * *uniformDomain
            rpcDurations.WithLabelValues("uniform").Observe(v)
            time.Sleep(time.Duration(100*oscillationFactor()) * time.Millisecond)
        }
    }()

    go func() {
        for {
            v := (rand.NormFloat64() * *normDomain) + *normMean
            rpcDurations.WithLabelValues("normal").Observe(v)
            time.Sleep(time.Duration(75*oscillationFactor()) * time.Millisecond)
        }
    }()

    go func() {
        for {
            v := rand.ExpFloat64() / 1e6
            rpcDurations.WithLabelValues("exponential").Observe(v)
            time.Sleep(time.Duration(50*oscillationFactor()) * time.Millisecond)
        }
    }()

    // Expose the registered metrics via HTTP.
    http.Handle("/metrics", promhttp.Handler())
    log.Fatal(http.ListenAndServe(*addr, nil))
}

在本例子中,我们注册了一个名叫rpc_durations_seconds的指标,首先需要prometheus.MustRegister注册一个监控指标,在本例中rpc_durations_secondsprometheus.NewSummaryVec类型的,其他类型可以参考官方文档rpcDurations是一个全局的单例,可以在期望更新监控数据的时候可以调用rpcDurations.WithLabelValues("uniform").Observe(v)来增加监控数据即可。代码模板可以参考如下仓库

集成Promehtues系统进行应用监控

1.我们将上文中打包好的应用镜像,并下发Deployment与Service到集群中。

apiVersion: apps/v1beta1
kind: Deployment
metadata:
  name: demo-app
  labels:
    app: demo-app
spec:
  replicas: 2
  selector:
    matchLabels:
      app: demo-app
  template:
    metadata:
      labels:
        app: demo-app
    spec:
      containers:
      - name: demo-app
        image: registry.cn-hangzhou.aliyuncs.com/ringtail/prometheus-demo:v1
        command:
        - /random 
        ports:
        - containerPort: 8080
---
apiVersion: v1
kind: Service
metadata:
  labels:
    app: demo-app
  name: demo-app
  namespace: default
spec:
  ports:
  - name: http-metrics
    port: 8080
    protocol: TCP
    targetPort: 8080
  selector:
    app: demo-app
  type: ClusterIP 

2.部署当前应用的serviceMonitor到集群

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  labels:
    app: demo-app
  name: demo-app
  namespace: monitoring
spec:
  endpoints:
  - interval: 30s
    port: http-metrics
  jobLabel: app
  namespaceSelector:
    matchNames:
    - default
  selector:
    matchLabels:
      app: demo-app

此处需要特别做些解释,serviceMonitor是Prometheus Operator中抽象的概念,他的作用就是讲配置Prometheus采集Target的配置变化成为动态发现的方式,可以serviceMonitor通过Deployment对应的Service配置进行挂钩,通过label selector选择Service,并自动发现后端容器。其中需要注意的是namespace字段永远为monitoring,而namespaceSelector中则是选择的应用所在的namespace。

3.访问Prometheus,验证数据采集,打开Status下的Service Discovery,active的数目等于Pod数据即表示采集正常。

# 本地Proxy到Prometheus
kubectl --namespace monitoring port-forward svc/prometheus-k8s 9090

image

打开Graph页面,选择我们刚才推送的数据指标名称,点击Execute,即可查看到采集上来的数据。

image

4.配置Grafana页面,点击New Dashboard,创建新的Dashboard,展现监控数据

# 本地Proxy到Grafana
kubectl --namespace monitoring port-forward svc/grafana 3000

image

在本例子中,我们配置了计算rpc_durations_seconds和值的语法,在Prometheus中还有非常多复杂的聚合方式,建议大家参考已有的一些Dashboard或者翻阅PromSQL的文档

最后

使用Prometheus接入应用监控的方式非常简单,整个操作的流程非常kubernetes,这也是目前非常多的开源软件和Kubernetes集成的一种方式与趋势,在开发者习惯了之后,会越来越感受到这种方式的便利。更多的operator可以参考这个repo

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
29天前
|
存储 监控 对象存储
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
针对本地存储和 PVC 这两种容器存储使用方式,我们对 ACK 的容器存储监控功能进行了全新升级。此次更新完善了对集群中不同存储类型的监控能力,不仅对之前已有的监控大盘进行了优化,还针对不同的云存储类型,上线了全新的监控大盘,确保用户能够更好地理解和管理容器业务应用的存储资源。
117 21
|
1月前
|
存储 监控 对象存储
ACK容器监控存储全面更新:让您的应用运行更稳定、更透明
介绍升级之后的ACK容器监控体系,包括各大盘界面展示和概要介绍。
|
1月前
|
存储 运维 Kubernetes
正式开源,Doris Operator 支持高效 Kubernetes 容器化部署方案
飞轮科技推出了 Doris 的 Kubernetes Operator 开源项目(简称:Doris Operator),并捐赠给 Apache 基金会。该工具集成了原生 Kubernetes 资源的复杂管理能力,并融合了 Doris 组件间的分布式协同、用户集群形态的按需定制等经验,为用户提供了一个更简洁、高效、易用的容器化部署方案。
正式开源,Doris Operator 支持高效 Kubernetes 容器化部署方案
|
1月前
|
Kubernetes Linux 虚拟化
入门级容器技术解析:Docker和K8s的区别与关系
本文介绍了容器技术的发展历程及其重要组成部分Docker和Kubernetes。从传统物理机到虚拟机,再到容器化,每一步都旨在更高效地利用服务器资源并简化应用部署。容器技术通过隔离环境、减少依赖冲突和提高可移植性,解决了传统部署方式中的诸多问题。Docker作为容器化平台,专注于创建和管理容器;而Kubernetes则是一个强大的容器编排系统,用于自动化部署、扩展和管理容器化应用。两者相辅相成,共同推动了现代云原生应用的快速发展。
209 11
|
1月前
|
人工智能 运维 监控
容器服务Kubernetes场景下可观测体系生产级最佳实践
阿里云容器服务团队在2024年继续蝉联Gartner亚洲唯一全球领导者象限,其可观测体系是运维的核心能力之一。该体系涵盖重保运维、大规模集群稳定性、业务异常诊断等场景,特别是在AI和GPU场景下提供了全面的观测解决方案。通过Tracing、Metric和Log等技术,阿里云增强了对容器网络、存储及多集群架构的监控能力,帮助客户实现高效运维和成本优化。未来,结合AI助手,将进一步提升问题定位和解决效率,缩短MTTR,助力构建智能运维体系。
|
容器 Perl 监控
阿里云Kubernetes平台构建和管理实践(下)
阿里云智能容器平台解决方案架构师徐征讲解阿里云Kubernetes平台构建和管理实践,徐征主要从事帮助企业在面向云原生的应用转型的过程中提供解决方案和相应的工作。
3306 0
|
容器 Kubernetes Perl
阿里云Kubernetes平台构建和管理实践(上)
阿里云智能容器平台解决方案架构师徐征讲解阿里云Kubernetes平台构建和管理实践,徐征主要从事帮助企业在面向云原生的应用转型的过程中提供解决方案和相应的工作。
10950 0
|
1月前
|
缓存 容灾 网络协议
ACK One多集群网关:实现高效容灾方案
ACK One多集群网关可以帮助您快速构建同城跨AZ多活容灾系统、混合云同城跨AZ多活容灾系统,以及异地容灾系统。
|
2月前
|
Kubernetes Ubuntu 网络安全
ubuntu使用kubeadm搭建k8s集群
通过以上步骤,您可以在 Ubuntu 系统上使用 kubeadm 成功搭建一个 Kubernetes 集群。本文详细介绍了从环境准备、安装 Kubernetes 组件、初始化集群到管理和使用集群的完整过程,希望对您有所帮助。在实际应用中,您可以根据具体需求调整配置,进一步优化集群性能和安全性。
148 12
|
2月前
|
Prometheus Kubernetes 监控
OpenAI故障复盘 - 阿里云容器服务与可观测产品如何保障大规模K8s集群稳定性
聚焦近日OpenAI的大规模K8s集群故障,介绍阿里云容器服务与可观测团队在大规模K8s场景下我们的建设与沉淀。以及分享对类似故障问题的应对方案:包括在K8s和Prometheus的高可用架构设计方面、事前事后的稳定性保障体系方面。

相关产品

  • 容器服务Kubernetes版