手把手 | 教你用几行Python和消费数据做客户细分

简介:

细分客户群是向客户提供个性化体验的关键。它可以提供关于客户行为、习惯与偏好的相关信息,帮助企业提供量身定制的营销活动从而改善客户体验。在业界人们往往把他吹嘘成提高收入的万能药,但实际上这个操作并不复杂,本文就将带你用简单的代码实现这一项目。

80bec75fe507e5088b5372fe69a09a13da56185e

客户细分

我们需要创建什么?

通过使用消费交易数据,我们将会通过创建一个2 x 2的有价值属性的矩阵来得到4个客户群。每一个客户群将与其他群体有两大区别,即当前客户价值和潜在客户价值。

我们将使用什么技术?

我们将使用RFM模型从消费交易数据中创建所需变量。RFM模型代表:

 ●  最近消费(Recency):他们最近一次消费是什么时候?
 ●  消费频率(Frequency):他们多久消费一次、一次消费多久?
 ●  消费金额(Monetary):他们消费了多少?

该模型通常被用于在三个属性交叉处寻找高价值客户。但在本例中,我们将仅适用R(最近消费)与M(消费金额)来创建二维矩阵。

b7c375ecd94e83fa228f91e0293ea4e4e3639cff

RFM模型

我们使用什么数据?

我们将使用Tableau提供的消费数据样本——它也被称为“Global Superstore”。它通常被用于预测与时间序列分析。该数据集包含超过1500位不同客户4年的消费数据。既然我们做的是行为细分而非人口细分,我们将通过仅选择B2C领域的消费者以及美国区域的消费数据来去除潜在的人口偏差。

我们采取什么方法?

第0步:导入、筛选、清理、合并消费者层级数据。

第1步:为每一位消费者创建RFM变量。

第2步:为实现自动细分,我们将使用R与M变量的80%分位数;我们其实还可以用k均值聚类(K-mean Clustering)或者利用商业背景知识来进行群体区分——比如,全球超市企业用户将活跃客户定义为最近一次订单在100天内的客户。

第3步:计算RM分数,并对客户进行排序。

第4步:可视化价值矩阵,并对关键指标进行进一步分析。

Python实现:

第0步:导入、筛选、清理、合并消费者层级数据。

 

import matplotlib as plt
import numpy as np
%matplotlib inline
import warnings
warnings.filterwarnings( 'ignore' )
import pandas as pd
url = 'https://github.com/tristanga/Data-Analysis/raw/master/Global%20Superstore.xls'
df = pd.read_excel(url)
df = df[(df.Segment == 'Consumer' ) & (df.Country == 'United States' )]
df.head()

第1步:为每一位消费者创建RFM变量。

 

df_RFM = df.groupby( 'Customer ID' ).agg({ 'Order Date' : lambda y: (df[ 'Order Date' ].max().date() - y.max().date()).days,
'Order ID' : lambda y: len(y.unique()),
'Sales' : lambda y: round(y.sum(), 2 )})
df_RFM.columns = [ 'Recency' , 'Frequency' , 'Monetary' ]
df_RFM = df_RFM.sort_values( 'Monetary' , ascending=False)
df_RFM.head()
f5c493d90071d1cbce0e2cd21f2bcc3f7c700b44

第2步:使用R与M变量的80%分位数实现自动细分。

 

# We will use the 80 % quantile for each feature
quantiles = df_RFM.quantile(q=[ 0.8 ])
print(quantiles)
df_RFM[ 'R' ]=np.where(df_RFM[ 'Recency' ]<= int (quantiles.Recency.values), 2 , 1 )
df_RFM[ 'F' ]=np.where(df_RFM[ 'Frequency' ]>= int (quantiles.Frequency.values), 2 , 1 )
df_RFM[ 'M' ]=np.where(df_RFM[ 'Monetary' ]>= int (quantiles.Monetary.values), 2 , 1 )
df_RFM.head()
0421b1153f9da07214a20259c472fdacd204e0f0

第3步:计算RM分数,并对客户进行排序。

 

# To do the 2 x 2 matrix we will only use Recency & Monetary
df_RFM[ 'RMScore' ] = df_RFM.M. map (str)+df_RFM.R. map (str)
df_RFM = df_RFM.reset_index()
df_RFM_SUM = df_RFM.groupby( 'RMScore' ).agg({ 'Customer ID' : lambda y: len(y.unique()),
'Frequency' : lambda y: round(y.mean(), 0 ),
'Recency' : lambda y: round(y.mean(), 0 ),
'R' : lambda y: round(y.mean(), 0 ),
'M' : lambda y: round(y.mean(), 0 ),
'Monetary' : lambda y: round(y.mean(), 0 )})
df_RFM_SUM = df_RFM_SUM.sort_values( 'RMScore' , ascending=False)
df_RFM_SUM.head()
3cadd36fe02030e7c0537dc62dddbadb4b973c92

第4步:可视化价值矩阵,并对关键指标进行进一步分析。


# 1) Average Monetary Matrix
df_RFM_M = df_RFM_SUM.pivot(index='M', columns='R', values='Monetary')
df_RFM_M= df_RFM_M.reset_index().sort_values(['M'], ascending = False).set_index(['M'])
df_RFM_M

# 2) Number of Customer Matrix
df_RFM_C = df_RFM_SUM.pivot(index='M', columns='R', values='Customer ID')
df_RFM_C= df_RFM_C.reset_index().sort_values(['M'], ascending = False).set_index(['M'])
df_RFM_C

# 3) Recency Matrix
b23d9f8776ac95caf01f46e80e45909adfa1a3c4

最终矩阵(左上:流失客户;右上:明星客户;左下:次要客户;右下:新客户)

一些简单的销售与营销策略的启发性实例

“流失客户”分类中的客户人数不是很多,并且从他们身上得到的的平均收入高于“明星客户”分类。既然人数不多,从客户层面与业务部门合作对这些客户进行分析研究并制定一个留住他们的策略应该不难:给他们打电话或者直接见面,说不定就可以把他们挪到“明星客户”分类(例如,高参与度客户)。

“次要客户”分类的平均最近消费时间非常久远(超过1年,而参与度较高的客户平均来说该数据只有60至70天)。发起一些发放优惠券一类的营销活动可能能够带来新的消费,并帮助把该类客户挪至“新客户”分类(例如,高参与度客户)。

eeda076ff18b565dcf5593eeea4da8408622b86f

简单策略实例(上:打电话;下:电邮营销)


原文发布时间为:2018-10-24

本文作者:张秋玥、罗然、云舟

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“大数据文摘”。

相关文章
|
1月前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
177 10
|
8天前
|
数据采集 Web App开发 数据可视化
Python用代理IP获取抖音电商达人主播数据
在当今数字化时代,电商直播成为重要的销售模式,抖音电商汇聚了众多达人主播。了解这些主播的数据对于品牌和商家至关重要。然而,直接从平台获取数据并非易事。本文介绍如何使用Python和代理IP高效抓取抖音电商达人主播的关键数据,包括主播昵称、ID、直播间链接、观看人数、点赞数和商品列表等。通过环境准备、代码实战及数据处理与可视化,最终实现定时任务自动化抓取,为企业决策提供有力支持。
|
3月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
使用Python实现深度学习模型:智能数据隐私保护
使用Python实现深度学习模型:智能数据隐私保护 【10月更文挑战第3天】
269 0
|
28天前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
23天前
|
数据采集 存储 XML
python实战——使用代理IP批量获取手机类电商数据
本文介绍了如何使用代理IP批量获取华为荣耀Magic7 Pro手机在电商网站的商品数据,包括名称、价格、销量和用户评价等。通过Python实现自动化采集,并存储到本地文件中。使用青果网络的代理IP服务,可以提高数据采集的安全性和效率,确保数据的多样性和准确性。文中详细描述了准备工作、API鉴权、代理授权及获取接口的过程,并提供了代码示例,帮助读者快速上手。手机数据来源为京东(item.jd.com),代理IP资源来自青果网络(qg.net)。
|
1月前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
2月前
|
传感器 物联网 开发者
使用Python读取串行设备的温度数据
本文介绍了如何使用Python通过串行接口(如UART、RS-232或RS-485)读取温度传感器的数据。详细步骤包括硬件连接、安装`pyserial`库、配置串行端口、发送请求及解析响应等。适合嵌入式系统和物联网应用开发者参考。
75 3
|
3月前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
3月前
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
235 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
|
3月前
|
计算机视觉 Python
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
这篇文章介绍了如何使用Python的OpenCV库将多张图片合并为一张图片显示,以及如何使用matplotlib库从不同txt文档中读取数据并绘制多条折线图。
67 3
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图

热门文章

最新文章