AI学习笔记——Q Learning

简介: 继续接着上一篇,这篇文章介绍强化学习中的一个经典算法——Q Learning.在之前的文章中已经介绍过了,强化学习就是让机器人(Agent)在与环境的互动过程学习解决问题的最佳路径的过程。

继续接着上一篇,这篇文章介绍强化学习中的一个经典算法——Q Learning.

之前的文章中已经介绍过了,强化学习就是让机器人(Agent)在与环境的互动过程学习解决问题的最佳路径的过程。

强化学习通常包括这么几个重要概念:

  • 状态(State (S))
  • 动作(Action(A))
  • 奖励(Reward(R))

下面以一个例子来解释这几个概念,并介绍一下Q Learning是什么:

img_44df3cad2b7a122c192867d03b9e1a7a.png

上图红色方框就是我们的机器人,任务是要在4x4的迷宫中找到黄色圆圈的宝藏,并学习到达宝藏的最佳路径。如果以左上角的初始状态为S 0,那么整个迷宫一共有16个 状态(State)(从左到右从上到下分别是S 0到S 15)。机器人的 行动(Action)有四个: 分别是向左(A 1)向右(A 2)向上(A 3)和向下(A 4)移动。如果找到黄色圆圈(宝藏) 奖励(Reward)为1,掉入黑色陷阱奖励(Reward)为-1,其他地方为0。

1. Q表(Q table)

Q Learning 就是创造一个Q表,来指导机器人的行动,Q表对应Action的数值越大,机器人就越大概率地采取这个Action.

Q table (States\Actions) left (A1) right (A2) up (A3) down (A4)
S0 -1 3 -1 2
S1 1 2 -1 1
... ... ... ... ..

比如Q表在S0最大概率会向右移动,在S1最大概率还是向右移动,因为A2在两个状态的Q表数值都是最大的。

这个Q表是经过学习之后的结果,学习并不断更新这个表的过程就是Q Learning。

2. 探索-利用困境(Explore-Exploit dilemma)

Q Learning 是如何学习并更新Q表呢?正如多臂老虎机(Multi-armed bandit)问题一样,如果机器人仅仅按照表中最大概率指导行动的话,是学不到任何东西的,它还需要不停地在未知地图上进行探索,这就是是探索-利用困境(Explore-Exploit dilemma)。同样的,我们也可以用ε贪婪方法(ε -Greedy method)的方法来解决这个困境。

也就是设定一个ε(比如0.9),90%的几率按照Q表数值最大Action行动,10%随机行动。每行动一次就要更新一下Q表。

3. 如何更新Q表

Q learning的算法就是如何更新Q表的方法。还是以表下为例:

Q table (States\Actions) left (A1) right (A2) up (A3) down (A4)
S0 -1 3 -1 2
S1 1 2 -1 1

当机器人处于S0的状态时,如果刚好选择了A2,那么下一个状态就是S1(注意有10%的概率会选择其他的Action, 而到达其他的状态)。行动之后,我们就需要更新Q(S0,A2)的数值, 先给结果吧:

Q(S0,A2) = Q(S0,A2) + α[R(S1) + γ*maxa Q(S1,a)-Q(S0,A2)]

解释一下

  • R(S1)是机器人在S1能活的的奖励(Reward)(该游戏除了陷阱的地方为-1,宝藏的地方为1,其他地方均为0)。
  • γ为衰减值。
  • maxa Q(S1,a)是S1状态下Q表数值最大的一个(这里是2)。
  • α是学习速率(Learning Rate)。
  • R(S1) + γ*maxa Q(S1,a)是Q(S0,A2) 的目标数值。

那我们再把公式重写一遍就清楚了吧:

Q(S0,A2)新=Q(S0,A2) 旧 + α* [Q(S0,A2)目标 - Q(S0,A2)旧]

上面的公式像极了在线性回归中的梯度下降法(Gradient Descent)。只不过在线性回归我们更新权重W的方法,在这里我们更新Q表而已。

完整的公式如下:


img_9755261b5d5c34d316f8b6bbdf6c3b23.png

4. 衰减值

这里再解释一下为什么要用衰减值 γ,从上面的公式可以看出,St 和 St+1是一个递归的关系。当机器人走到第n步的时候,会受到0到n-1每一步状态的影响。如果衰减值γ=1,那么每一步的影响都是一样的。γ在0到1之间,就可以让越靠近n的状态对第n步影响越大,之前的状态随着行动的增加,影响力会越来越小。


文章首发steemit.com 为了方便墙内阅读,搬运至此,欢迎留言或者访问我的Steemit主页

目录
相关文章
|
3天前
|
人工智能 测试技术 API
AI计算机视觉笔记二十 九:yolov10竹签模型,自动数竹签
本文介绍了如何在AutoDL平台上搭建YOLOv10环境并进行竹签检测与计数。首先从官网下载YOLOv10源码并创建虚拟环境,安装依赖库。接着通过官方模型测试环境是否正常工作。然后下载自定义数据集并配置`mycoco128.yaml`文件,使用`yolo detect train`命令或Python代码进行训练。最后,通过命令行或API调用测试训练结果,并展示竹签计数功能。如需转载,请注明原文出处。
|
3天前
|
JSON 人工智能 数据格式
AI计算机视觉笔记二十六:YOLOV8自训练关键点检测
本文档详细记录了使用YOLOv8训练关键点检测模型的过程。首先通过清华源安装YOLOv8,并验证安装。接着通过示例权重文件与测试图片`bus.jpg`演示预测流程。为准备训练数据,文档介绍了如何使用`labelme`标注工具进行关键点标注,并提供了一个Python脚本`labelme2yolo.py`将标注结果从JSON格式转换为YOLO所需的TXT格式。随后,通过Jupyter Notebook可视化标注结果确保准确性。最后,文档展示了如何组织数据集目录结构,并提供了训练与测试代码示例,包括配置文件`smoke.yaml`及训练脚本`train.py`,帮助读者完成自定义模型的训练与评估。
|
3天前
|
人工智能 并行计算 PyTorch
AI计算机视觉笔记十八:Swin Transformer目标检测环境搭建
本文详细记录了Swin Transformer在AutoDL平台上的环境搭建与训练过程。作者从租用GPU实例开始,逐步介绍了虚拟环境的创建、PyTorch安装、mmcv及mmdetection的配置,并解决了安装过程中遇到的各种问题,如cython版本冲突等。最后,通过修改代码实现目标检测结果的保存。如需了解更多细节或获取完整代码,请联系作者。原文链接:[原文链接](请在此处插入原文链接)。
|
4天前
|
机器学习/深度学习 人工智能 PyTorch
AI计算机视觉笔记三十二:LPRNet车牌识别
LPRNet是一种基于Pytorch的高性能、轻量级车牌识别框架,适用于中国及其他国家的车牌识别。该网络无需对字符进行预分割,采用端到端的轻量化设计,结合了squeezenet和inception的思想。其创新点在于去除了RNN,仅使用CNN与CTC Loss,并通过特定的卷积模块提取上下文信息。环境配置包括使用CPU开发板和Autodl训练环境。训练和测试过程需搭建虚拟环境并安装相关依赖,执行训练和测试脚本时可能遇到若干错误,需相应调整代码以确保正确运行。使用官方模型可获得较高的识别准确率,自行训练时建议增加训练轮数以提升效果。
|
4天前
|
人工智能 开发工具 计算机视觉
AI计算机视觉笔记三十:yolov8_obb旋转框训练
本文介绍了如何使用AUTODL环境搭建YOLOv8-obb的训练流程。首先创建虚拟环境并激活,然后通过指定清华源安装ultralytics库。接着下载YOLOv8源码,并使用指定命令开始训练,过程中可能会下载yolov8n.pt文件。训练完成后,可使用相应命令进行预测测试。
|
3天前
|
人工智能 PyTorch 算法框架/工具
AI计算机视觉笔记二十二:基于 LeNet5 的手写数字识别及训练
本文介绍了使用PyTorch复现LeNet5模型并检测手写数字的过程。通过搭建PyTorch环境、安装相关库和下载MNIST数据集,实现了模型训练与测试。训练过程涉及创建虚拟环境、安装PyTorch及依赖库、准备数据集,并编写训练代码。最终模型在测试集上的准确率达到0.986,满足预期要求。此项目为后续在RK3568平台上部署模型奠定了基础。
|
3天前
|
人工智能 TensorFlow 算法框架/工具
AI计算机视觉笔记十七:实例分割
本文介绍了计算机视觉中的实例分割技术,通过结合目标检测和语义分割的方法,实现对图像中不同实例的精确区分与标记。以识别多只猫为例,详细描述了使用Mask R-CNN模型进行实例分割的过程,并提供了相关代码及环境搭建指南。通过实例演示,展示了如何利用该技术成功识别并分割出图像中的各个对象。
|
3天前
|
人工智能 并行计算 测试技术
AI计算机视觉笔记三十一:基于UNetMultiLane的多车道线等识别
该项目基于开源数据集 VIL100 实现了 UNetMultiLane,用于多车道线及车道线类型的识别。数据集中标注了六个车道的车道线及其类型。项目详细记录了从环境搭建到模型训练与测试的全过程,并提供了在 CPU 上进行训练和 ONNX 转换的代码示例。训练过程约需 4 小时完成 50 个 epoch。此外,还实现了视频检测功能,可在视频中实时识别车道线及其类型。
|
4天前
|
传感器 人工智能 算法
AI计算机视觉笔记二十七:YOLOV8实现目标追踪
本文介绍了使用YOLOv8实现人员检测与追踪的方法。通过为每个人员分配唯一ID,实现持续追踪,并可统计人数,适用于小区或办公楼出入管理。首先解释了目标检测与追踪的区别,接着详细描述了使用匈牙利算法和卡尔曼滤波实现目标关联的过程。文章提供了基于IOU实现追踪的具体步骤,包括环境搭建、模型加载及追踪逻辑实现。通过示例代码展示了如何使用YOLOv8进行实时视频处理,并实现人员追踪功能。测试结果显示,该方法在实际场景中具有较好的应用潜力。
|
3天前
|
人工智能 测试技术 PyTorch
AI计算机视觉笔记二十四:YOLOP 训练+测试+模型评估
本文介绍了通过正点原子的ATK-3568了解并实现YOLOP(You Only Look Once for Panoptic Driving Perception)的过程,包括训练、测试、转换为ONNX格式及在ONNX Runtime上的部署。YOLOP由华中科技大学团队于2021年发布,可在Jetson TX2上达到23FPS,实现了目标检测、可行驶区域分割和车道线检测的多任务学习。文章详细记录了环境搭建、训练数据准备、模型转换和测试等步骤,并解决了ONNX转换过程中的问题。