AI学习笔记——Sarsa算法

简介: 上一篇文章介绍了强化学习中的Q-Learning算法,这篇文章介绍一个与Q-Learning十分类似的算法——Sarsa算法。1. 回顾Q Learning还是同样的例子,红色机器人在4x4的迷宫中寻找黄色的宝藏。

上一篇文章介绍了强化学习中的Q-Learning算法,这篇文章介绍一个与Q-Learning十分类似的算法——Sarsa算法。

1. 回顾Q Learning

还是同样的例子,红色机器人在4x4的迷宫中寻找黄色的宝藏。找到宝藏,将会的到+1的奖励,如果掉进黑色陷阱就回的到-1的奖励(惩罚)。


img_a0db4198159b1117399b4fa43e5b68ee.png

首先回顾一下Q表如下

Q table (States\Actions) left (A1) right (A2) up (A3) down (A4)
S0 -1 3 -1 2
S1 1 2 -1 1
... ... ... ... ..

Q(S0,A2) = Q(S0,A2) + α[R(S1) + γ*maxa Q(S1,a)-Q(S0,A2)]

在Q Learning 算法中,当机器人处于S0的状态时,它的目标Q值是:
R(S1) + γ*maxa Q(S1,a)。此时他还在S0的位置上,但是已经在计算S1上的最大Q值了。但是此时它并没有行动,也不一定会在S1采取Q值最大Q(S1, A2)的行动。因为我们提到,它还有10%的概率随机选择其他的行动 (ε贪婪方法(ε -Greedy method))。

2. Sarsa 行动派

在Sarsa算法中,机器人的目标是

R(S1) + γ*Q(S1,A)

至于A是多少,完全取决于机器人实际上选择的哪一个Action。机器人有90%的概率会选择Q值最大的Action(A2),还有10%的概率会随机选择一个Action。

所以,Sarsa的算法是这样的。


img_fd24f43f0dcb965134ae7cb67f6e09de.png

除了其目标Q值与Q learning 有所不同之外,其他的都是一模一样的。

所以Sarsa是在线学习(On Policy)的算法,因为他是在行动中学习的,使用了两次greedy方法来选择出了Q(S,A)和q(S',A')。而Q learning离线学习(Off Policy)的算法,QLearning选择Q(S,A)用了greedy方法,而计算A(S',A')时用的是max方法,而真正选择的时候又不一定会选择max的行动。

Q learning 通过Max的函数,总是在寻找能最快获得宝藏的道路,所以他比较勇敢。而Sarsa 却相对谨慎。

3. Sarsa-lambda

Q learning 和 Sarsa都是单步更新的算法。单步跟新的算法缺点就是在没有找到宝藏之前,机器人在原地打转的那些行动也被记录在案,并更新了Q表,即便那些行动都是没有意义的。

Lambda(λ)这个衰减系数的引入,就是为了解决这个问题的。与γ用来衰减未来预期Q的值一样,λ是当机器人获得宝藏之后,在更新Q表的时候,给机器人一个回头看之前走过的路程的机会。相当于,机器人每走一步就会在地上插一杆旗子,然后机器人每走一步旗子就会变小一点。
Sarsa-lambda 的完整算法在这里:


img_8b641b30a73d726b8762ed7f2f85cf99.png

注意,该算法与Sarsa 算法不同的地方就是多乘了一个E(s, a) (Eligibility Trace"不可或缺性值"),而这个E(s, a)又同时受γ和λ调控。并且在更新Q表的时候,不仅仅是更新一个Q(S,A),而是整个Q表所有的Q值都被更新了。


文章首发steemit.com 为了方便墙内阅读,搬运至此,欢迎留言或者访问我的Steemit主页

目录
相关文章
阿里云 AI 搜索开放平台:从算法到业务——AI 搜索驱动企业智能化升级
本文介绍了阿里云 AI 搜索开放平台的技术的特点及其在各行业的应用。
407 3
用Qwen3+MCPs实现AI自动发布小红书笔记!支持图文和视频
魔搭自动发布小红书MCP,是魔搭开发者小伙伴实现的小红书笔记自动发布器,可以通过这个MCP自动完成小红书标题、内容和图片的发布。
913 41
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
Paper2Code是由韩国科学技术院与DeepAuto.ai联合开发的多智能体框架,通过规划、分析和代码生成三阶段流程,将机器学习论文自动转化为可执行代码仓库,显著提升科研复现效率。
348 19
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
本文介绍了通义灵码2.0 AI程序员在嵌入式开发中的实战应用。通过安装VS Code插件并登录阿里云账号,用户可切换至DeepSeek V3模型,利用其强大的代码生成能力。实战案例中,AI程序员根据自然语言描述快速生成了C语言的base64编解码算法,包括源代码、头文件、测试代码和CMake编译脚本。即使在编译错误和需求迭代的情况下,AI程序员也能迅速分析问题并修复代码,最终成功实现功能。作者认为,通义灵码2.0显著提升了开发效率,打破了编程语言限制,是AI编程从辅助工具向工程级协同开发转变的重要标志,值得开发者广泛使用。
8339 71
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
AI是如何收集体育数据的?从摄像头到算法,揭秘赛场背后的“数字间谍网“!
⚽ 你是否好奇:AI如何知道哈兰德每秒跑多快?教练的平板为何比裁判还清楚谁偷懒?本文揭秘AI收集体育数据的“黑科技”:视觉追踪、传感器网络、数据清洗与高阶分析。从高速摄像机捕捉梅西肌肉抖动,到GPS背心记录姆巴佩冲刺速度;从表情识别判断装伤,到量子计算模拟战术可能,AI正让体育更透明、精准。未来已来,2030年世界杯或将实现AI替代球探、裁判甚至教练!你认为AI数据收集算侵犯隐私吗?最想统计哪些奇葩指标?留言互动吧!
📘 AI Clouder认证学习笔记|从初入江湖到晨光乍现
正如史蒂夫·乔布斯所言:“求知若渴,虚心若愚。”本文是一篇AI Clouder认证学习笔记,记录了一位初学者在探索AI领域的过程中所经历的挑战与成长。作者分享了从软件安装问题到技术工具掌握的心路历程,并强调了心态与自驱力的重要性。通过Python编程、通义灵码等工具的学习,以及对教学设计的深刻反思。
Windows版来啦!Qwen3+MCPs,用AI自动发布小红书图文/视频笔记!
上一篇用 Qwen3+MCPs实现AI自动发小红书的最佳实践 有超多小伙伴关注,同时也排队在蹲Windows版本的教程。
398 1
算法为舟 思想为楫:AI时代,创作何为?
本文探讨了AI时代创作领域的变革与挑战,分析了人类创作者的独特价值,并展望了未来创作的新图景。随着生成式AI技术的发展,创作的传统认知被颠覆,评价体系面临革新。然而,人类创作者凭借批判性思维、情感智能、创意直觉和伦理自觉,依然具有不可替代的价值。文章呼吁创作者转变思维,从竞争走向合作,提升复合能力,关注作品的社会影响,并持续学习进化。在AI助力下,创作将更加民主化、多样化,推动文明进步。最终,人机协同或将成为未来创作的核心模式,共同开创文化发展的新纪元。
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
146 6
如何在Python下实现摄像头|屏幕|AI视觉算法数据的RTMP直播推送
本文详细讲解了在Python环境下使用大牛直播SDK实现RTMP推流的过程。从技术背景到代码实现,涵盖Python生态优势、AI视觉算法应用、RTMP稳定性及跨平台支持等内容。通过丰富功能如音频编码、视频编码、实时预览等,结合实际代码示例,为开发者提供完整指南。同时探讨C接口转换Python时的注意事项,包括数据类型映射、内存管理、回调函数等关键点。最终总结Python在RTMP推流与AI视觉算法结合中的重要性与前景,为行业应用带来便利与革新。
194 5

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问