Python3入门机器学习 - 多项式回归与学习曲线

简介: 非线性方程的拟合,例如 y=x^2+0.5x+1 , 就是将x^2看作X的一个特征值#准备数据import numpy as npimport matplotlib.

非线性方程的拟合,例如 y=x^2+0.5x+1 , 就是将x^2看作X的一个特征值

#准备数据
import numpy as np
import matplotlib.pyplot as plt

x = np.random.uniform(-3,3,size=100)
X = x.reshape(-1,1)

y = 0.5*x**2 + x + 2 +np.random.normal(0,1,size=100)
X2 = np.hstack([X,X**2])  #将X和X^2共同作为特征值构成心得矩阵

from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X2,y)

plt.scatter(x,y)
plt.plot(np.sort(x),lin_reg.predict(X2)[np.argsort(x)],color='r')

img_9d2250eddb0eb97f8c267a20954b9c62.png


scikit-learn中的多项式回归

from sklearn.preprocessing import PolynomialFeatures

poly = PolynomialFeatures(degree=3)
poly.fit(X)
X2 = poly.transform(X)
# X2.shape = (100,4)
img_4f34df20b3fdd541a1bc53fb7dae007c.png
将X拓展为了具有X,X^2,X^3的矩阵

当数据具有多个特征时,即X不止有一列时

img_6253dcfffccf24fffa2e1e95e1a17f48.png


多项式回归应用于PipeLine


使用PipeLine管道一次性进行多项式回归、数据归一化、线性回归预测

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

poly_reg = Pipeline([
    ("poly",PolynomialFeatures(degree=2)),
    ("std_scaler",StandardScaler()),
    ("lin_reg",LinearRegression())
])

poly_reg.fit(X,y)

y_predict = poly_reg.predict(X)

plt.scatter(x,y)
plt.plot(np.sort(x),y_predict[np.argsort(x)],color='r')
plt.show()
img_28dd7997b269fdf876f7c3830a1922a1.png


学习曲线


由学习曲线看欠拟合和过拟合,横轴代表训练用数据数量,纵轴为均方根误差

def plot_learning_curve(algo,X_train,X_test,y_train,y_test):
    
    train_score = []
    test_score = []
    
    for i in range(1,len(X_train)+1):
        algo.fit(X_train[:i],y_train[:i])
        
        y_train_predict = algo.predict(X_train[:i])
        train_score.append(sqrt(mean_squared_error(y_train_predict[:i],y_train[:i])))
        
        y_test_predict = algo.predict(X_test)
        test_score.append(sqrt(mean_squared_error(y_test_predict,y_test)))
        
    plt.plot([i for i in range(1,len(X_train)+1)],train_score,label="train")
    plt.plot([i for i in range(1,len(X_train)+1)],test_score,label="test")
    plt.legend()
    plt.axis([0,len(X_train)+1,0,4])
    plt.show()
plot_learning_curve(LinearRegression(),X_train,X_test,y_train,y_test)
img_12e60bb1327f5ab02fca629daec3dca1.png
欠拟合,误差较大
poly2_reg = PolynomialRegression(degree=2)
plot_learning_curve(poly2_reg,X_train,X_test,y_train,y_test)
img_e45e78636fad3d42bc243924a60a3c84.png
最佳
poly20_reg = PolynomialRegression(degree=20)
plot_learning_curve(poly20_reg,X_train,X_test,y_train,y_test)
img_fcd1853ed6ea29401a96f3da5b83a55c.png
过拟合,泛化能力较差,较好拟合训练集,难以拟合测试集
目录
相关文章
|
5天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
21 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
8天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
18 2
|
9天前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
25 1
|
9天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
29 1
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
32 2
|
16天前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
21 3
|
20天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
27 1
|
26天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第12天】本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型训练和评估等步骤,并提供了代码示例。通过本文,读者可以掌握机器学习的基本流程,并为深入学习打下坚实基础。
20 1
|
1月前
|
机器学习/深度学习 人工智能 架构师