高可用Redis(六):瑞士军刀之bitmap,HyperLoglog和GEO

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 1.bitmap位图1.1 bitmap位图的概念首先来看一个例子,字符串big,字母b的ASCII码为98,转换成二进制为 01100010字母i的ASCII码为105,转换成二进制为 01101001字母g的ASCII码为103,转换成二进制为 01100111如果在Redis中,设...

1.bitmap位图

1.1 bitmap位图的概念

首先来看一个例子,字符串big,

字母b的ASCII码为98,转换成二进制为 01100010
字母i的ASCII码为105,转换成二进制为 01101001
字母g的ASCII码为103,转换成二进制为 01100111

如果在Redis中,设置一个key,其值为big,此时可以get到big这个值,也可以获取到 big的ASCII码每一个位对应的值,也就是0或1

例如:

127.0.0.1:6379> set hello big
OK
127.0.0.1:6379> getbit hello 0      # b的二进制形式的第1位,即为0
(integer) 0
127.0.0.1:6379> getbit hello 1      # b的二进制形式的第2位,即为1
(integer) 1

big长度为3个字节,对应的长度为24位,使用getbit命令可以获取到big对应的位的对应的值

所以Redis是可以直接对位进行操作的

1.2 bitmap的常用命令

1.2.1 setbit命令

setbit key offset vlaue         给位图指定索引设置值

例子:

127.0.0.1:6379> set hello big       # 设置键值对,key为'hello',value为'big'
OK
127.0.0.1:6379> setbit hello 7 1    # 把hello二进制形式的第8位设置为1,之前的ASCII码为98,现在改为99,即把b改为c
(integer) 0                         # 返回的是之前这个位上的值
127.0.0.1:6379> get hello           # 修改之后,获取'hello'的值,为'cig'
"cig"

上面big的长度只有24位,如果使用setbit命令时,指定的位大于目标的长度时

127.0.0.1:6379> setbit hello 50 1
(integer) 0
127.0.0.1:6379> get hello
"cig\x00\x00\x00 "

从第25开始到第49位,中间用0来填充,第50位才会被设置为1

1.2.2 getbit命令

getbit key offset           获取位图指定索引的值

例子:

127.0.0.1:6379> getbit hello 25
(integer) 0
127.0.0.1:6379> getbit hello 49
(integer) 0
127.0.0.1:6379> getbit hello 50
(integer) 1

1.2.3 bitcount命令

bitcount key [start end]        获取位图指定范围(start到end,单位为字节,如果不指定就是获取全部)位值为1的个数

例子:

127.0.0.1:6379> bitcount hello
(integer) 14
127.0.0.1:6379> bitcount hello 0 23
(integer) 14

1.2.4 bitop命令

bitop op dtstkey key [key...]       做多个bitmap的and(交集),or(并集),not(非),xor(异或)操作并将结果保存在destkey中
bitpos key targetBit [start] [end]  计算位图指定范围(start到end,单位为字节,如果不指定就是获取全部)第一个偏移量对应的值等于targetBit的位置 

1.3 bitmap位图应用

如果一个网站有1亿用户,假如user_id用的是整型,长度为32位,每天有5千万独立用户访问,如何判断是哪5千万用户访问了网站

1.3.1 方式一:用set来保存

使用set来保存数据运行一天需要占用的内存为

32bit * 50000000 = (4 * 50000000) / 1024 /1024 MB,约为200MB

运行一个月需要占用的内存为6G,运行一年占用的内存为72G

30 * 200 = 6G

1.3.2 方式二:使用bitmap的方式

如果user_id访问网站,则在user_id的索引上设置为1,没有访问网站的user_id,其索引设置为0,此种方式运行一天占用的内存为

1 * 100000000 = 100000000 / 1014 /1024/ 8MB,约为12.5MB

运行一个月占用的内存为375MB,一年占用的内存容量为4.5G

由此可见,使用bitmap可以节省大量的内存资源

1.4 bitmap使用经验

bitmap是string类型,单个值最大可以使用的内存容量为512MB
setbit时是设置每个value的偏移量,可以有较大耗时
bitmap不是绝对好,用在合适的场景最好

2.HyperLoglog

2.1 HyperLoglog简介

基于HyperLogLog算法,极小空间完成独立数量统计

维基百科地址

2.2 常用命令

pfadd key element [element...]                  向hyperloglog添加元素
pfcount key [key...]                            计算hyperloglog的独立总数
prmerge destkey sourcekey [sourcekey...]        合并多个hyperloglog

例子:

127.0.0.1:6379> pfadd unique_ids1 'uuid_1' 'uuid_2' 'uuid_3' 'uuid_4'       # 向unique_ids1中添加4个元素
(integer) 1
127.0.0.1:6379> pfcount unique_ids1         # 查看unique_ids1中元素的个数
(integer) 4
127.0.0.1:6379> pfadd unique_ids1 'uuid_1' 'uuid_2' 'uuid_3' 'uuid_10'      # 再次向unique_ids1中添加4个元素
(integer) 1
127.0.0.1:6379> pfcount unique_ids1         # 由于两次添加的value有重复,所以unique_ids1中只有5个元素
(integer) 5
127.0.0.1:6379> pfadd unique_ids2 'uuid_1' 'uuid_2' 'uuid_3' 'uuid_4'       # 向unique_ids2中添加4个元素
(integer) 1
127.0.0.1:6379> pfcount unique_ids2         # 查看unique_ids2中元素的个数
(integer) 4
127.0.0.1:6379> pfadd unique_ids2 'uuid_4' 'uuid_5' 'uuid_6' 'uuid_7'       # 再次向unique_ids2中添加4个元素
(integer) 1
127.0.0.1:6379> pfcount unique_ids2         # 再次查看unique_ids2中元素的个数,由于两次添加的元素中有一个重复,所以有7个元素
(integer) 7
127.0.0.1:6379> pfmerge unique_ids1 unique_ids2     # 合并unique_ids1和unique_ids2
OK
127.0.0.1:6379> pfcount unique_ids1         # unique_ids1和unique_ids2中有重复元素,所以合并后的hyperloglog中只有8个元素
(integer) 8

2.3 HyperLoglog内存消耗(百万独立用户)

例子:

127.0.0.1:6379> flushall            # 清空Redis中所有的key和value
OK
127.0.0.1:6379> info                # 查看Redis占用的内存量
...省略
# Memory
used_memory:833528
used_memory_human:813.99K           # 此时Redis中没有任何键值对,占用814k内存
used_memory_rss:5926912
used_memory_rss_human:5.65M
used_memory_peak:924056
used_memory_peak_human:902.40K
total_system_memory:1023938560
total_system_memory_human:976.50M
used_memory_lua:37888
used_memory_lua_human:37.00K
maxmemory:0
maxmemory_human:0B
maxmemory_policy:noeviction
mem_fragmentation_ratio:7.11
mem_allocator:jemalloc-3.6.0
...省略

运行如下python代码:

import redis
import time

client = redis.StrictRedis(host='192.168.81.101',port=6379)
key = 'unique'
start_time = time.time()

for i in range(1000000):
    client.pfadd(key,i)

等待python代码运行完成,再次查看Redis占用的内存数

127.0.0.1:6379> info
...省略
# Memory
used_memory:849992
used_memory_human:830.07K
used_memory_rss:5939200
used_memory_rss_human:5.66M
used_memory_peak:924056
used_memory_peak_human:902.40K
total_system_memory:1023938560
total_system_memory_human:976.50M
used_memory_lua:37888
used_memory_lua_human:37.00K
maxmemory:0
maxmemory_human:0B
maxmemory_policy:noeviction
mem_fragmentation_ratio:6.99
mem_allocator:jemalloc-3.6.0
...省略

可以看到,使用hyperloglog向redis中存入100万条数据,需占用的内存为

830.07K - 813.99K约为16k

占用的内存很少。

当然天下没有免费的午餐,hyperloglog也有非常明显的局限性

首先,hyperloglog有一定的错误率,在使用hyperloglog进行数据统计的过程中,hyperloglog给出的数据不一定是对的
按照维基百科的说法,使用hyperloglog处理10亿条数据,占用1.5Kb内存时,错误率为2%
其次,没法从hyperloglog中取出单条数据,这很容易理解,使用16KB的内存保存100万条数据,此时还想把100万条数据取出来,显然是不可能的

2.4 HyperLoglog注意事项

使用hyperloglog进行数据统计时,需要考虑三个因素:

1.是否需要很少的内存去解决问题,
2.是否能容忍错误
3.是否需要单条数据

3.GEO

3.1 GEO简介

GEO即地址信息定位
可以用来存储经纬度,计算两地距离,范围计算等

img_599ad020ce9c4bb7e8a11eeeae5a5911.png

如上图中,计算北京到天津两地之间的距离

3.2 GEO常用命令

3.2.1 geoadd命令

geoadd key longitude latitude member [longitude latitude member...]     增加地理位置信息

img_9e5586a372fbde0c70edd5c3986661ca.png

如上图是5个城市经纬度相关数据

127.0.0.1:6379> geoadd cities:locations 116.28 39.55 beijing                # 添加北京的经纬度
(integer) 1
127.0.0.1:6379> geoadd cities:locations 117.12 39.08 tianjin 114.29 38.02 shijiazhuang    # 添加天津和石家庄的经纬度
(integer) 2
127.0.0.1:6379> geoadd cities:locations 118.01 39.38 tangshan 115.29 38.51 baoding         # 添加唐山和保定的经纬度
(integer) 2

3.2.2 geppos命令

geopos key member [member...]       获取地理位置信息

例子:

127.0.0.1:6379> geopos cities:locations tianjin     # 获取天津的地址位置信息
1) 1) "117.12000042200088501"
   2) "39.0800000535766543"

3.2.3 geodist命令

geodist key member1 member2 [unit]      获取两个地理位置的距离,unit:m(米),km(千米),mi(英里),ft(尺)

例子:

127.0.0.1:6379> geodist cities:locations tianjin beijing km
"89.2061"
127.0.0.1:6379> geodist cities:locations tianjin baoding km
"170.8360"

3.2.4 georadius命令和georadiusbymember命令

georedius key longitude latitude radiusm|km|ft|mi [withcoord] [withdist] [withhash] [COUNT count] [asc|desc] [store key][storedist key]
georadiusbymember key member radiusm|km|ft|mi [withcoord] [withdist] [withhash] [COUNT count] [asc|desc] [store key][storedist key]
获取指定位置范围内的地理位置信息集合
    withcoord:返回结果中包含经纬度
    withdist:返回结果中包含距离中心节点位置
    withhash:返回结果中包含geohash
    COUNT count:指定返回结果的数量
    asc|desc:返回结果按照距离中心节点的距离做升序或者降序
    store key:将返回结果的地理位置信息保存到指定键
    storedist key:将返回结果距离中心节点的距离保存到指定键

例子:

127.0.0.1:6379> georadiusbymember cities:locations beijing 150 km   # 获取距离北京150km范围内的城市
1) "beijing"
2) "tianjin"
3) "tangshan"
4) "baoding"

3.3 GEO相关说明

Redis的GEO功能是从3.2版本添加
geo功能基于zset实现
geo没有删除命令

3.3.1 使用zrem命令来进行geo的删除操作

命令:

zrem key member

例子:

127.0.0.1:6379> georadiusbymember cities:locations beijing 150 km
1) "beijing"
2) "tianjin"
3) "tangshan"
4) "baoding"
127.0.0.1:6379> zrem cities:locations baoding
(integer) 1
127.0.0.1:6379> georadiusbymember cities:locations beijing 150 km
1) "beijing"
2) "tianjin"
3) "tangshan"

3.4 GEO的应用场景

微信摇一摇
相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
3月前
|
NoSQL Redis
基于Redis的高可用分布式锁——RedLock
这篇文章介绍了基于Redis的高可用分布式锁RedLock的概念、工作流程、获取和释放锁的方法,以及RedLock相比单机锁在高可用性上的优势,同时指出了其在某些特殊场景下的不足,并提到了ZooKeeper作为另一种实现分布式锁的方案。
112 2
基于Redis的高可用分布式锁——RedLock
|
13天前
|
存储 NoSQL PHP
如何用Redis高效实现点赞功能?用Set?还是Bitmap?
在众多软件应用中,点赞功能几乎成为标配。本文从实际需求出发,探讨如何利用 Redis 的 `Set` 和 `Bitmap` 数据结构设计高效点赞系统,分析其优缺点,并提供 PHP 实现示例。通过对比两种方案,帮助开发者选择最适合的存储方式。
27 3
|
26天前
|
存储 NoSQL 定位技术
Redis geo原理
Redis的GEO功能基于Earth Mapper(http://earth-api.org/)库,它允许存储地理位置信息并执行一些基于该信息的操作。
25 3
|
26天前
|
存储 NoSQL 定位技术
Redis GEO
10月更文挑战第19天
31 1
|
29天前
|
NoSQL 算法 关系型数据库
Redis HyperLogLog
10月更文挑战第17天
16 2
|
1月前
|
存储 NoSQL 大数据
大数据-51 Redis 高可用方案CAP-AP 主从复制 一主一从 全量和增量同步 哨兵模式 docker-compose测试
大数据-51 Redis 高可用方案CAP-AP 主从复制 一主一从 全量和增量同步 哨兵模式 docker-compose测试
33 3
|
1月前
|
消息中间件 分布式计算 NoSQL
大数据-41 Redis 类型集合(2) bitmap位操作 geohash空间计算 stream持久化消息队列 Z阶曲线 Base32编码
大数据-41 Redis 类型集合(2) bitmap位操作 geohash空间计算 stream持久化消息队列 Z阶曲线 Base32编码
27 2
|
3月前
|
存储 监控 NoSQL
redis数据结构-HyperLogLog
redis数据结构-HyperLogLog
42 1
|
4月前
|
存储 NoSQL 算法
Redis中 HyperLogLog数据类型使用总结
Redis中 HyperLogLog数据类型使用总结
26 0
|
存储 NoSQL Java