业界 | Teradata全球调研:四分之三企业分析项目数据科学家“缺货”

简介:

当地时间10月15日,2018 Teradata全球用户大会在美国拉斯维加斯举行。来自15个国家的3000多位数据人参与了本次峰会。

大会第一日,Teradata发布了针对“企业数据分析”的2018年调研结果。

调研结果显示,多数被访问的高级管理人员对数据分析投资结果不满意:他们认为相关投资并未带来他们期望的成果。

具体来看,该调研报告罗列了企业数据分析项目面临三大基本挑战:

1) 分析技术过于复杂:近四分之三(74%)的受访者表示,企业使用的分析技术过于复杂d;其中42%的受访者认为企业员工难以使用或理解分析技术。

2) 用户无法获取所有所需数据:79%的受访者表示,他们需要获得更多企业数据,才能高效完成任务。

3) 优秀数据科学家缺乏成为发展瓶颈:仅25%的受访者表示,其全球企业内的业务决策者无需数据科学家,也具备从分析能力中获取并使用智能化技术的技能。

过于复杂的分析技术

近年来,数据采集、存储和分析技术呈爆炸性增长趋势,但其复杂度也显著提升,经常导致技术无法有效使用。调研报告显示,其主要原因是科技厂商通常不会做足功课,确保所有企业员工都能轻松了解并使用其产品;随着近期开源工具的激增与普及,这一问题进一步加剧。

962b3000d3d4f20a3abedec3974d43aae2f4d6d9

 ●  大约四分之三(74%)的受访者企业正在投资分析技术。受访者表示,这些分析技术非常复杂。
 ●  近三分之一(31%)的受访者表示,复杂分析技术的负面影响之一是企业各部门无法普及。
 ●  近二分之一(46%)的受访者表示,分析技术实际上并未推动业务增长,因为用户对该技术提出过多问题,但并未获得足够解答。
 ●  超过二分之一(53%)的受访者认为,复杂的分析技术实际上已成为企业过重的负担。
 ●  42%的受访者表示,导致复杂性问题的主要因素之一是并非所有员工都能轻松使用或理解该技术。

数据访问受限

调研结果还显示,用户需要访问更多数据,才能高效完成任务。决策者和用户都清楚,做出更明智的决策通常需要更多数据。而无法获取所有必要数据经常是顺利实施分析技术的绊脚石。决策者需要做出明智决策,但平均缺少近三分之一的信息——这一差距无法接受,对决定市场竞争成败举足轻重。

7eb5638ad3601e7f95cb4442960b3a1f0cc5229a

 ●  79%的受访者表示,他们需获得更多企业数据,才能高效完成任务。这些受访者也表示,他们缺少平均近三分之一(28%)所需数据。
 ●  81%的受访者认为,他们希望企业部署无处不在的分析技术。
 ●  超过一半的(54%)的受访者表示,企业IT部门正在运用分析技术;而只有不到四分之一(23%)的受访者表示,其管理层和董事会成员正在运用分析技术。

数据科学家缺乏

最后,缺少“独角兽”式的数据科学家仍是企业发展瓶颈所在,这使企业难以部署无处不在的智能化技术。大多数受访者表示,为解决这一问题,企业正在或计划投资更易用的技术及技术培训,以增强员工的技术能力。

db4d197fce5cfd04e0f8a16cfe50acb1fed385fe

 ●  仅25%的受访者表示,其业务决策者无需数据科学家,也具备从分析能力中获取并使用智能化技术的技能。
 ●  近三分之二(63%)的受访者来自目前正在投资分析技术的企业。他们认为,企业内不从事分析任务的员工难以使用分析技术。
 ●  75%的受访者企业需要数据科学家帮助业务决策者从分析技术中获取智能化技术。
 ●  为减轻企业对数据科学家的过度依赖,目前需要数据科学家的94%的受访者企业正在或计划投入开展技术培训,提升员工的技术水平;而91%的受访者企业正在或计划投资更易用的技术。

本次调研由Teradata天睿公司委托独立科技市场调研公司Vanson Bourne在 2018 年 8 月至 9 月,面向全球企业高管开展。共访谈美洲、欧洲及亚太地区的 260名高级业务和IT 决策者。 受访者来自上市或私有企业,企业拥有不少于1,000名员工且全球年收入不低于2.5亿美元(其中,69%的受访者企业的全球年收入不低于10亿美元)。所有访谈均通过在线访谈或电话沟通。本次调研经过严格的多级筛查,确保只有符合要求的候选人才有机会参加调研。

d34e6b60555057549e65968763eb8e9176e9c10a



原文发布时间为:2018-10-17

本文作者:魏子敏

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“大数据文摘”。

相关文章
|
5月前
|
关系型数据库 OLAP 分布式数据库
核心系统转型问题之Gartner分析师对阿里云数据库的评价是啥样的
核心系统转型问题之Gartner分析师对阿里云数据库的评价是啥样的
《云上大型赛事保障白皮书》——第二章 云上大型赛事保障体系——2.4 云上大型赛事保障方法论——2.4.1 赛前全局梳理
《云上大型赛事保障白皮书》——第二章 云上大型赛事保障体系——2.4 云上大型赛事保障方法论——2.4.1 赛前全局梳理
796 0
|
达摩院 架构师 Cloud Native
数智洞察 | 企业背后的驱动力——探索阿里的超大团队管理秘籍
编者按: 当一群高智商、高薪酬的人聚在一起,是脑力的风暴还是角力的漩涡?是在冥思苦想还是在浑水摸鱼?这很大程度上决定了一家公司的生产力。 本文揭秘阿里巴巴的研发团队,看阿里云智能总裁、达摩院院长张建锋(花名行癫)如何管理超大规模开发团队。
406 0
|
机器学习/深度学习 人工智能 监控
作为今年业务流程领域最热的技术赛道,国产流程挖掘都有哪些特点与优势?
以艺赛旗iS-RPM为例,聊聊国产流程挖掘产品的特性与优势。
570 0
作为今年业务流程领域最热的技术赛道,国产流程挖掘都有哪些特点与优势?
|
存储 传感器 消息中间件
【实践案例】Databricks 数据洞察在美的暖通与楼宇的应用实践
获取更详细的 Databricks 数据洞察相关信息,可至产品详情页查看:https://www.aliyun.com/product/bigdata/spark
【实践案例】Databricks 数据洞察在美的暖通与楼宇的应用实践
|
存储 人工智能 边缘计算
​5G行业应用成熟度洞察,哪些场景将率先起飞?|新基建技术洞察
作为新基建之首,5G的发展和应用成为行业关注重点。今年3月份,国家新基建的号角吹响,5G也按下了加速键。仅3月份三大运营商就发布了近50万个5G基站主设备集采。随后工信部要求三大运营商在今年三季度提前完成全年的5G基站建设。
2883 0
​5G行业应用成熟度洞察,哪些场景将率先起飞?|新基建技术洞察
|
供应链 大数据 BI
亿欧智库发布最新研究报告 阿里云数据中台成中国乳企数字化首选方案
亿欧智库从中国乳制品行业现状和痛点出发,对牧场奶源、生产制造、物流供应链和消费者连接每一个环节的数字化现状进行深入分析,得出数据中台是未来乳制品行业数字化升级改造的方向。
3246 0
亿欧智库发布最新研究报告  阿里云数据中台成中国乳企数字化首选方案
|
前端开发 数据挖掘 BI
创业公司如何做数据分析(二)运营数据系统
作为系列文章的第二篇,本文将首先来探讨应用层中的运营数据系统,因为运营数据几乎是所有互联网创业公司开始做数据的起点,也是早期数据服务的主要对象。本文将着重回顾下我们做了哪些工作、遇到过哪些问题、如何解决并实现了相应的功能。
5877 0

热门文章

最新文章