深度学习第19讲:CNN经典论文研读之残差网络ResNet及其keras实现

简介:

在 VGG 网络论文研读中,我们了解到卷积神经网络也可以进行到很深层,VGG16 和 VGG19 就是证明。但卷积网络变得更深呢?当然是可以的。深度神经网络能够从提取图像各个层级的特征,使得图像识别的准确率越来越高。但在2014年和15年那会儿,将卷积网络变深且取得不错的训练效果并不是一件容易的事。

深度卷积网络一开始面临的最主要的问题是梯度消失和梯度爆炸。那什么是梯度消失和梯度爆炸呢?所谓梯度消失,就是在深层神经网络的训练过程中,计算得到的梯度越来越小,使得权值得不到更新的情形,这样算法也就失效了。而梯度爆炸则是相反的情况,是指在神经网络训练过程中梯度变得越来越大,权值得到疯狂更新的情形,这样算法得不到收敛,模型也就失效了。当然,其间通过设置 relu 和归一化激活函数层等手段使得我们很好的解决这些问题。但当我们将网络层数加到更深时却发现训练的准确率在逐渐降低。这种并不是由过拟合造成的神经网络训练数据识别准确率降低的现象我们称之为退化(degradation)。

1353079b5027a8ff52d6d14332fd5bb03b8f49fe

由上图我们可以看到 56 层的普通卷积网络不管是在训练集还是测试集上的训练误差都要高于 20 层的卷积网络。是个典型的退化现象。

这退化问题不解决,咱们的深度学习就无法 go deeper. 于是何凯明等一干大佬就发明了今天我们要研读的论文主题——残差网络 ResNet.

残差块与残差网络

要理解残差网络,就必须理解残差块(residual block)这个结构,因为残差块是残差网络的基本组成部分。回忆一下我们之前学到的各种卷积网络结构(LeNet-5/AlexNet/VGG),通常结构就是卷积池化再卷积池化,中间的卷积池化操作可以很多层。类似这样的网络结构何凯明在论文中将其称为普通网络(Plain Network),何凯明认为普通网络解决不了退化问题,我们需要在网络结构上作出创新。

何凯明给出的创新在于给网络之间添加一个捷径(shortcuts)或者也叫跳跃连接(skip connection),这使得捷径之间之间的网络能够学习一个恒等函数,使得在加深网络的情形下训练效果至少不会变差。残差块的基本结构如下:

c90e0c934ee31924f65cb40b9f124b437eab7088

以上残差块是一个两层的网络结构,输入 X 经过两层的加权和激活得到 F(X) 的输出,这是典型的普通卷积网络结构。但残差块的区别在于添加了一个从输入 X 到两层网络输出单元的 shortcut,这使得输入节点的信息单元直接获得了与输出节点的信息单元通信的能力 ,这时候在进行 relu 激活之前的输出就不再是 F(X) 了,而是 F(X)+X。当很多个具备类似结构的这样的残差块组建到一起时,残差网络就顺利形成了。残差网络能够顺利训练很深层的卷积网络,其中能够很好的解决网络的退化问题。

或许你可能会问凭什么加了一条从输入到输出的捷径网络就能防止退化训练更深层的卷积网络?或是是说残差网络为什么能有效?我们将上述残差块的两层输入输出符号改为 和 ,相应的就有:

0cd281fb213b9891173e615e8f951a7991670f43

加入的跳跃连接后就有: 148fd99c8c17d608f277603ed3a367171d0621a6

在网络中加入 L2 正则化进行权值衰减或者其他情形下,l+2 层的权值 W 是很容易衰减为零的,假设偏置同样为零的情形下就有 = 。深度学习的试验表明学习这个恒等式并不困难,这就意味着,在拥有跳跃连接的普通网络即使多加几层,其效果也并不逊色于加深之前的网络效果。当然,我们的目标不是保持网络不退化,而是需要提升网络表现,当隐藏层能够学到一些有用的信息时,残差网络的效果就会提升。所以,残差网络之所以有效是在于它能够很好的学习上述那个恒等式,而普通网络学习恒等式都很困难,残差网络在两者相较中自然胜出。

由很多个残差块组成的残差网络如下图右图所示:

9030205da0f462b752ab601c7b82c97a62a9c040

残差块的 keras 实现

要实现一个残差块,关键在于实现一个跳跃连接。实际处理中跳跃连接会随着残差块输入输出大小的不同而分为两种。一种是输入输出一致情况下的 Identity Block,另一种则是输入输出不一致情形下的 Convolutional Block,顾名思义,就是跳跃连接中包含卷积操作,用来使得输入输出一致。且看二者的 keras 实现方法。

Identity Block 的图示如下:

ee8cf8de071e6a57199d8ddef9c09c86e133bf5e

编写实现代码如下:


def identity_block(X, f, filters, stage, block):
"""
Implementation of the identity block as defined in Figure 3
Arguments:
X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
f -- integer, specifying the shape of the middle CONV's window for the main path
filters -- python list of integers, defining the number of filters in the CONV layers of the main path
stage -- integer, used to name the layers, depending on their position in the network
Returns:
block -- string/character, used to name the layers, depending on their position in the network X -- output of the identity block, tensor of shape (n_H, n_W, n_C)
""" # defining name basis
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch' # Retrieve Filters
F1, F2, F3 = filters
# Save the input value. You'll need this later to add back to the main path.
X_shortcut = X
# First component of main path
X = Conv2D(filters = F1, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X)
X = Activation('relu')(X)
# Second component of main path
X = Conv2D(filters = F2, kernel_size = (f, f), strides= (1, 1), padding = 'same', name = conv_name_base + '2b', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = bn_name_base + '2b')(X)
X = Activation('relu')(X)
# Third component of main path
X = Conv2D(filters = F3, kernel_size = (1, 1), strides = (1, 1), padding = 'valid', name = conv_name_base + '2c', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = bn_name_base + '2c')(X)
# Final step: Add shortcut value to main path, and pass it through a RELU activation
X = Add()([X, X_shortcut])
X = Activation('relu')(X)
return X

可见残差块的实现特殊之处就在于添加一条跳跃连接。

Convolutional Block 的图示如下:

3128681d852260ee284a9712a196b3c6dfd64750

编写实现代码如下:


def convolutional_block(X, f, filters, stage, block, s = 2):
"""
Implementation of the convolutional block as defined in Figure 4
Arguments:
f -- integer, specifying the shape of the middle CONV's window for the main path
X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
filters -- python list of integers, defining the number of filters in the CONV layers of the main path
stage -- integer, used to name the layers, depending on their position in the network
X -- output of the convolutional block, tensor of shape (n_H, n_W, n_C)
block -- string/character, used to name the layers, depending on their position in the network s -- Integer, specifying the stride to be used Returns:
""" # defining name basis
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch' # Retrieve Filters
F1, F2, F3 = filters
# Save the input value
X_shortcut = X
##### MAIN PATH ##### # First component of main path
X = Conv2D(filters = F1, kernel_size = (1, 1), strides = (s,s), padding = 'valid', name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X)
X = Activation('relu')(X)
# Second component of main path
X = Conv2D(filters = F2, kernel_size = (f, f), strides = (1,1), padding = 'same', name = conv_name_base + '2b', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = bn_name_base + '2b')(X)
X = Activation('relu')(X)
# Third component of main path
X = Conv2D(filters = F3, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2c', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = bn_name_base + '2c')(X)
##### SHORTCUT PATH ####
X_shortcut = Conv2D(filters = F3, kernel_size = (1, 1), strides = (s, s), padding = 'valid', name = conv_name_base + '1', kernel_initializer = glorot_uniform(seed=0))(X_shortcut)
X_shortcut = BatchNormalization(axis = 3, name = bn_name_base + '1')(X_shortcut)
# Final step: Add shortcut value to main path, and pass it through a RELU activation
X = Add()([X, X_shortcut])
X = Activation('relu')(X)
return X

残差网络 resnet50 的 keras 实现

搭建好组件残差块之后就是确定网络结构,将一个个残差块组成残差网络。下面搭建一个 resnet50 的残差网络,其基本结构如下:

CONV2D -> BATCHNORM -> RELU -> MAXPOOL -> CONVBLOCK -> IDBLOCK2 -> CONVBLOCK -> IDBLOCK3 -> CONVBLOCK -> IDBLOCK5 -> CONVBLOCK -> IDBLOCK2 -> AVGPOOL -> TOPLAYER

45a852c5562e59d93e9f79f4315863ae20bf6e2e

编写实现代码如下:


def ResNet50(input_shape = (64, 64, 3), classes = 6):

# Define the input as a tensor with shape input_shape
X_input = Input(input_shape)
# Zero-Padding
X = ZeroPadding2D((3, 3))(X_input)
# Stage 1
X = Conv2D(64, (7, 7), strides = (2, 2), name = 'conv1', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = 'bn_conv1')(X)
X = Activation('relu')(X)
X = MaxPooling2D((3, 3), strides=(2, 2))(X)
# Stage 2
X = convolutional_block(X, f = 3, filters = [64, 64, 256], stage = 2, block='a', s = 1)
X = identity_block(X, 3, [64, 64, 256], stage=2, block='b')
X = identity_block(X, 3, [64, 64, 256], stage=2, block='c')
# Stage 3
X = convolutional_block(X, f = 3, filters = [128, 128, 512], stage = 3, block='a', s = 2)
X = identity_block(X, 3, [128, 128, 512], stage=3, block='b')
X = identity_block(X, 3, [128, 128, 512], stage=3, block='c')
X = identity_block(X, 3, [128, 128, 512], stage=3, block='d')
# Stage 4
X = convolutional_block(X, f = 3, filters = [256, 256, 1024], stage = 4, block='a', s = 2)
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='b')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='c')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='d')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='e')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='f')
# Stage 5
X = convolutional_block(X, f = 3, filters = [512, 512, 2048], stage = 5, block='a', s = 2)
X = identity_block(X, 3, [512, 512, 2048], stage=5, block='b')
X = identity_block(X, 3, [512, 512, 2048], stage=5, block='c')
# AVGPOOL (≈1 line). Use "X = AveragePooling2D(...)(X)"
X = AveragePooling2D((2, 2), strides=(2, 2))(X)
# output layer
X = Flatten()(X)
X = Dense(classes, activation='softmax', name='fc' + str(classes), kernel_initializer = glorot_uniform(seed=0))(X)
# Create model
model = Model(inputs = X_input, outputs = X, name='ResNet50')
return model

这样一个 resnet50 的残差网络就搭建好了,其关键还是在于搭建残差块,残差块搭建好之后只需根据网络结构构建残差网络即可。当然,其间也可以看到 keras 作为一个优秀的深度学习框架的便利之处。


原文发布时间为:2018-10-13

本文作者:louwill

本文来自云栖社区合作伙伴“Python爱好者社区”,了解相关信息可以关注“Python爱好者社区”。

相关文章
|
15天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
4天前
|
负载均衡 芯片 异构计算
NSDI'24 | 阿里云飞天洛神云网络论文解读——《LuoShen》揭秘新型融合网关 洛神云网关
NSDI‘24于4月16-18日在美国圣塔克拉拉市举办,阿里云飞天洛神云网络首次中稿NSDI,两篇论文入选。其中《LuoShen: A Hyper-Converged Programmable Gateway for Multi-Tenant Multi-Service Edge Clouds》提出超融合网关LuoShen,基于Tofino、FPGA和CPU的新型硬件形态,将公有云VPC设施部署到边缘机柜中,实现小型化、低成本和高性能。该方案使成本降低75%,空间占用减少87%,并提供1.2Tbps吞吐量,展示了强大的技术竞争力。
|
11天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
4天前
|
SQL Cloud Native API
NSDI'24 | 阿里云飞天洛神云网络论文解读——《Poseidon》揭秘新型超高性能云网络控制器
NSDI‘24于4月16-18日在美国加州圣塔克拉拉市举办,汇聚全球网络系统领域的专家。阿里云飞天洛神云网络的两篇论文入选,标志着其创新能力获广泛认可。其中,《Poseidon: A Consolidated Virtual Network Controller that Manages Millions of Tenants via Config Tree》介绍了波塞冬平台,该平台通过统一控制器架构、高性能配置计算引擎等技术,实现了对超大规模租户和设备的高效管理,显著提升了云网络性能与弹性。实验结果显示,波塞冬在启用EIP时的完成时间比Top 5厂商分别快1.8至55倍和2.6至4.8倍。
|
23天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
390 7
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
98 1

热门文章

最新文章