22、python协程

简介: 协程阅读目录一 引子二 协程介绍三 Greenlet模块四 Gevent模块引子  之前我们学习了线程、进程的概念,了解了在操作系统中进程是资源分配的最小单位,线程是CPU调度的最小单位。

协程

阅读目录

一 引子

二 协程介绍

三 Greenlet模块

四 Gevent模块

引子

  之前我们学习了线程、进程的概念,了解了在操作系统中进程是资源分配的最小单位,线程是CPU调度的最小单位。按道理来说我们已经算是把cpu的利用率提高很多了。但是我们知道无论是创建多进程还是创建多线程来解决问题,都要消耗一定的时间来创建进程、创建线程、以及管理他们之间的切换。

  随着我们对于效率的追求不断提高,基于单线程来实现并发又成为一个新的课题,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发。这样就可以节省创建线进程所消耗的时间。

  为此我们需要先回顾下并发的本质:切换+保存状态

   cpu正在运行一个任务,会在两种情况下切走去执行其他的任务(切换由操作系统强制控制),一种情况是该任务发生了阻塞,另外一种情况是该任务计算的时间过长


img_8c891ddb70b5a44670a2c580312a8551.png

  ps:在介绍进程理论时,提及进程的三种执行状态,而线程才是执行单位,所以也可以将上图理解为线程的三种状态 

   一:其中第二种情况并不能提升效率,只是为了让cpu能够雨露均沾,实现看起来所有任务都被“同时”执行的效果,如果多个任务都是纯计算的,这种切换反而会降低效率。

  为此我们可以基于yield来验证。yield本身就是一种在单线程下可以保存任务运行状态的方法,我们来简单复习一下:

#1 yiled可以保存状态,yield的状态保存与操作系统的保存线程状态很像,但是yield是代码级别控制的,更轻量级

#2 send可以把一个函数的结果传给另外一个函数,以此实现单线程内程序之间的切换

#串行执行import timedef consumer(res):

    '''任务1:接收数据,处理数据'''    passdef producer():

    '''任务2:生产数据'''    res=[]

    for i in range(10000000):

        res.append(i)

    return res

start=time.time()#串行执行res=producer()

consumer(res) #写成consumer(producer())会降低执行效率stop=time.time()print(stop-start) #1.5536692142486572#基于yield并发执行import timedef consumer():

    '''任务1:接收数据,处理数据'''    while True:

        x=yielddef producer():

    '''任务2:生产数据'''    g=consumer()

    next(g)

    for i in range(10000000):

        g.send(i)

start=time.time()#基于yield保存状态,实现两个任务直接来回切换,即并发的效果

#PS:如果每个任务中都加上打印,那么明显地看到两个任务的打印是你一次我一次,即并发执行的.producer()

stop=time.time()print(stop-start) #2.0272178649902344

  二:第一种情况的切换。在任务一遇到io情况下,切到任务二去执行,这样就可以利用任务一阻塞的时间完成任务二的计算,效率的提升就在于此。

import timedef consumer():

    '''任务1:接收数据,处理数据'''    while True:

        x=yielddef producer():

    '''任务2:生产数据'''    g=consumer()

    next(g)

    for i in range(10000000):

        g.send(i)

        time.sleep(2)

start=time.time()

producer() #并发执行,但是任务producer遇到io就会阻塞住,并不会切到该线程内的其他任务去执行stop=time.time()print(stop-start)

  对于单线程下,我们不可避免程序中出现io操作,但如果我们能在自己的程序中(即用户程序级别,而非操作系统级别)控制单线程下的多个任务能在一个任务遇到io阻塞时就切换到另外一个任务去计算,这样就保证了该线程能够最大限度地处于就绪态,即随时都可以被cpu执行的状态,相当于我们在用户程序级别将自己的io操作最大限度地隐藏起来,从而可以迷惑操作系统,让其看到:该线程好像是一直在计算,io比较少,从而更多的将cpu的执行权限分配给我们的线程。

    协程的本质就是在单线程下,由用户自己控制一个任务遇到io阻塞了就切换另外一个任务去执行,以此来提升效率。为了实现它,我们需要找寻一种可以同时满足以下条件的解决方案:

#1. 可以控制多个任务之间的切换,切换之前将任务的状态保存下来,以便重新运行时,可以基于暂停的位置继续执行。

#2. 作为1的补充:可以检测io操作,在遇到io操作的情况下才发生切换


协程介绍

协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。、

需要强调的是:

#1. python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)

#2. 单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)

对比操作系统控制线程的切换,用户在单线程内控制协程的切换

优点如下:

#1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级

#2. 单线程内就可以实现并发的效果,最大限度地利用cpu

缺点如下:

#1. 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程

#2. 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程

总结协程特点:

必须在只有一个单线程里实现并发

修改共享数据不需加锁

用户程序里自己保存多个控制流的上下文栈

附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))

Greenlet模块

安装 :pip3 install greenlet

from greenlet import greenletdef eat(name):

    print('%s eat 1' %name)

    g2.switch('egon')

    print('%s eat 2' %name)

    g2.switch()def play(name):

    print('%s play 1' %name)

    g1.switch()

    print('%s play 2' %name)

g1=greenlet(eat)

g2=greenlet(play)

g1.switch('egon')#可以在第一次switch时传入参数,以后都不需要

单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度

#顺序执行import timedef f1():

    res=1

    for i in range(100000000):

        res+=idef f2():

    res=1

    for i in range(100000000):

        res*=i

start=time.time()

f1()

f2()

stop=time.time()print('run time is %s' %(stop-start)) #10.985628366470337#切换from greenlet import greenletimport timedef f1():

    res=1

    for i in range(100000000):

        res+=i

        g2.switch()def f2():

    res=1

    for i in range(100000000):

        res*=i

        g1.switch()

start=time.time()

g1=greenlet(f1)

g2=greenlet(f2)

g1.switch()

stop=time.time()print('run time is %s' %(stop-start)) # 52.763017892837524

greenlet只是提供了一种比generator更加便捷的切换方式,当切到一个任务执行时如果遇到io,那就原地阻塞,仍然是没有解决遇到IO自动切换来提升效率的问题。

单线程里的这20个任务的代码通常会既有计算操作又有阻塞操作,我们完全可以在执行任务1时遇到阻塞,就利用阻塞的时间去执行任务2。。。。如此,才能提高效率,这就用到了Gevent模块。

Gevent模块

安装:pip3 install gevent

Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。

g1=gevent.spawn(func,1,,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的

g2=gevent.spawn(func2)

g1.join() #等待g1结束g2.join() #等待g2结束#或者上述两步合作一步:gevent.joinall([g1,g2])g1.value#拿到func1的返回值

import geventdef eat(name):

    print('%s eat 1' %name)

    gevent.sleep(2)

    print('%s eat 2' %name)def play(name):

    print('%s play 1' %name)

    gevent.sleep(1)

    print('%s play 2' %name)

g1=gevent.spawn(eat,'egon')

g2=gevent.spawn(play,name='egon')

g1.join()

g2.join()#或者gevent.joinall([g1,g2])print('主')

上例gevent.sleep(2)模拟的是gevent可以识别的io阻塞,而time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了

from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之前

或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头

from gevent import monkey;monkey.patch_all()import geventimport timedef eat():

    print('eat food 1')

    time.sleep(2)

    print('eat food 2')def play():

    print('play 1')

    time.sleep(1)

    print('play 2')

g1=gevent.spawn(eat)

g2=gevent.spawn(play)

gevent.joinall([g1,g2])print('主')

我们可以用threading.current_thread().getName()来查看每个g1和g2,查看的结果为DummyThread-n,即假线程

img_a411a0faedf9bc8e74f66c32eff347f8.png

from gevent import monkey;monkey.patch_all()import threadingimport geventimport timedef eat():

    print(threading.current_thread().getName())

    print('eat food 1')

    time.sleep(2)

    print('eat food 2')def play():

    print(threading.current_thread().getName())

    print('play 1')

    time.sleep(1)

    print('play 2')

g1=gevent.spawn(eat)

g2=gevent.spawn(play)

gevent.joinall([g1,g2])print('主')


Gevent之同步与异步

from gevent import spawn,joinall,monkey;monkey.patch_all()import timedef task(pid):

    """

    Some non-deterministic task

    """    time.sleep(0.5)

    print('Task %s done' % pid)def synchronous():  # 同步    for i in range(10):

        task(i)def asynchronous(): # 异步    g_l=[spawn(task,i) for i in range(10)]

    joinall(g_l)

    print('DONE')

    if __name__ == '__main__':

    print('Synchronous:')

    synchronous()

    print('Asynchronous:')

    asynchronous()#  上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn。

#  初始化的greenlet列表存放在数组threads中,此数组被传给gevent.joinall 函数,

#  后者阻塞当前流程,并执行所有给定的greenlet任务。执行流程只会在 所有greenlet执行完后才会继续向下走。


Gevent之应用举例一

from gevent import monkey;monkey.patch_all()import geventimport requestsimport timedef get_page(url):

    print('GET: %s' %url)

    response=requests.get(url)

    if response.status_code == 200:

        print('%d bytes received from %s' %(len(response.text),url))

start_time=time.time()

gevent.joinall([

    gevent.spawn(get_page,'https://www.python.org/'),

    gevent.spawn(get_page,'https://www.yahoo.com/'),

    gevent.spawn(get_page,'https://github.com/'),

])

stop_time=time.time()print('run time is %s' %(stop_time-start_time))

Gevent之应用举例二

通过gevent实现单线程下的socket并发

注意 :from gevent import monkey;monkey.patch_all()一定要放到导入socket模块之前,否则gevent无法识别socket的阻塞

from gevent import monkey;monkey.patch_all()from socket import *import gevent#如果不想用money.patch_all()打补丁,可以用gevent自带的socket

# from gevent import socket

# s=socket.socket()def server(server_ip,port):

    s=socket(AF_INET,SOCK_STREAM)

    s.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)

    s.bind((server_ip,port))

    s.listen(5)

    while True:

        conn,addr=s.accept()

        gevent.spawn(talk,conn,addr)def talk(conn,addr):

    try:

        while True:

            res=conn.recv(1024)

            print('client %s:%s msg: %s' %(addr[0],addr[1],res))

            conn.send(res.upper())

    except Exception as e:

        print(e)

    finally:

        conn.close()if __name__ == '__main__':

    server('127.0.0.1',8080)

from socket import *

client=socket(AF_INET,SOCK_STREAM)

client.connect(('127.0.0.1',8080))while True:

    msg=input('>>: ').strip()

    if not msg:continue    client.send(msg.encode('utf-8'))

    msg=client.recv(1024)

    print(msg.decode('utf-8'))

from threading import Threadfrom socket import *import threadingdef client(server_ip,port):

    c=socket(AF_INET,SOCK_STREAM) #套接字对象一定要加到函数内,即局部名称空间内,放在函数外则被所有线程共享,则大家公用一个套接字对象,那么客户端端口永远一样了    c.connect((server_ip,port))

    count=0

    while True:

        c.send(('%s say hello %s' %(threading.current_thread().getName(),count)).encode('utf-8'))

        msg=c.recv(1024)

        print(msg.decode('utf-8'))

        count+=1if __name__ == '__main__':

    for i in range(500):

        t=Thread(target=client,args=('127.0.0.1',8080))

        t.start()

目录
相关文章
|
6天前
|
Python
Python中的异步编程与协程实践
【9月更文挑战第28天】本文旨在通过一个简单易懂的示例,介绍如何在Python中利用asyncio库实现异步编程和协程。我们将通过代码示例来展示如何编写高效的并发程序,并解释背后的原理。
|
8天前
|
数据库 开发者 Python
实战指南:用Python协程与异步函数优化高性能Web应用
在快速发展的Web开发领域,高性能与高效响应是衡量应用质量的重要标准。随着Python在Web开发中的广泛应用,如何利用Python的协程(Coroutine)与异步函数(Async Functions)特性来优化Web应用的性能,成为了许多开发者关注的焦点。本文将从实战角度出发,通过具体案例展示如何运用这些技术来提升Web应用的响应速度和吞吐量。
12 1
|
8天前
|
调度 Python
揭秘Python并发编程核心:深入理解协程与异步函数的工作原理
在Python异步编程领域,协程与异步函数成为处理并发任务的关键工具。协程(微线程)比操作系统线程更轻量级,通过`async def`定义并在遇到`await`表达式时暂停执行。异步函数利用`await`实现任务间的切换。事件循环作为异步编程的核心,负责调度任务;`asyncio`库提供了事件循环的管理。Future对象则优雅地处理异步结果。掌握这些概念,可使代码更高效、简洁且易于维护。
11 1
|
12天前
|
调度 开发者 Python
探索Python中的异步编程:理解asyncio和协程
【9月更文挑战第22天】在现代软件工程中,异步编程是提升应用性能的关键技术之一。本文将深入探讨Python语言中的异步编程模型,特别是asyncio库的使用和协程的概念。我们将了解如何通过事件循环和任务来处理并发操作,以及如何用协程来编写非阻塞的代码。文章不仅会介绍理论知识,还会通过实际的代码示例展示如何在Python中实现高效的异步操作。
|
10天前
|
存储 算法 Java
关于python3的一些理解(装饰器、垃圾回收、进程线程协程、全局解释器锁等)
该文章深入探讨了Python3中的多个重要概念,包括装饰器的工作原理、垃圾回收机制、进程与线程的区别及全局解释器锁(GIL)的影响等,并提供了详细的解释与示例代码。
15 0
|
10天前
|
调度 Python
python3 协程实战(python3经典编程案例)
该文章通过多个实战案例介绍了如何在Python3中使用协程来提高I/O密集型应用的性能,利用asyncio库以及async/await语法来编写高效的异步代码。
11 0
|
2月前
|
数据处理 调度 开发者
解密Python的异步编程:协程与事件循环的实战应用
在现代应用程序开发中,异步编程已经成为提高性能和响应速度的关键技术。Python的异步编程通过协程和事件循环提供了高效处理并发任务的能力。本文将深入探讨Python中异步编程的核心概念,包括协程的基本用法、事件循环的工作机制以及如何在实际项目中应用这些技术。通过对比同步和异步编程的性能差异,读者将能够理解异步编程的优势,并学会如何在Python中实现高效的异步任务处理。
|
16天前
|
开发者 Python
探索Python中的异步编程:理解Asyncio和协程
【9月更文挑战第18天】在Python的世界中,异步编程是一个强大而神秘的概念。它像是一把双刃剑,掌握得好可以大幅提升程序的效率和性能;使用不当则可能让代码变得难以维护和理解。本文将带你一探究竟,通过深入浅出的方式介绍Python中asyncio库和协程的基本概念、使用方法及其背后的原理,让你对异步编程有一个全新的认识。
|
3月前
|
数据库 开发者 Python
实战指南:用Python协程与异步函数优化高性能Web应用
【7月更文挑战第15天】Python的协程与异步函数优化Web性能,通过非阻塞I/O提升并发处理能力。使用aiohttp库构建异步服务器,示例代码展示如何处理GET请求。异步处理减少资源消耗,提高响应速度和吞吐量,适用于高并发场景。掌握这项技术对提升Web应用性能至关重要。
75 10
|
3月前
|
大数据 数据处理 API
性能飞跃:Python协程与异步函数在数据处理中的高效应用
【7月更文挑战第15天】在大数据时代,Python的协程和异步函数解决了同步编程的性能瓶颈问题。同步编程在处理I/O密集型任务时效率低下,而Python的`asyncio`库支持的异步编程利用协程实现并发,通过`async def`和`await`避免了不必要的等待,提升了CPU利用率。例如,从多个API获取数据,异步方式使用`aiohttp`并发请求,显著提高了效率。掌握异步编程对于高效处理大规模数据至关重要。
45 4
下一篇
无影云桌面