智能问答机器人

简介:     智能问答机器人目前已经在自动化客服领域得到了广泛的应用,取得不错的效果。这种技术可以比较好地使用在各种咨询类的场景中,如售前的导购、售后的服务、医院的导诊、甚至医疗的辅助诊断等等。机器人可以迅速地响应用户的请求,提升服务的体验。也可以同时服务大量的用户,极大降低企业提供服务的成本。智能问答机器人一般采用一问一答的方式,高级一些的会采用多轮对话和主动对话的方式,

    智能问答机器人目前已经在自动化客服领域得到了广泛的应用,取得不错的效果。这种技术可以比较好地使用在各种咨询类的场景中,如售前的导购、售后的服务、医院的导诊、甚至医疗的辅助诊断等等。机器人可以迅速地响应用户的请求,提升服务的体验。也可以同时服务大量的用户,极大降低企业提供服务的成本。智能问答机器人一般采用一问一答的方式,高级一些的会采用多轮对话和主动对话的方式,主动澄清用户的问题,以提供精准的回答。总的来说,它是一种自动化的能力,将知识或信息,通过自然语言交互的方式准确地提供给需要的用户。

智能问答机器人能干什么

    2011年IBM研制的Watson深度问答系统(DeepQA)在美国最受欢迎的知识抢答竞赛节目《危险边缘》中战胜了人类顶尖知识问答高手。展现了问答技术在大数据和深度学习的支持下所能具备的潜在能力。

    在智能问答机器人的使用场景中,机器人根据用户的自然语言问题描述,进行精准的语义分析,定位用户问题或意图,提取用户问题或意图相关的信息,组织生成针对用户特定问题的解答。如下图对话所示,左侧是机器人,右侧是用户,讲述的是这样一个场景:用户购买了一箱水果和一双鞋子,收到货物后发现水果烂了,鞋子小了,内心满满的都是情绪。用户向商家的7x24小时在线客服机器人反映问题,询问解决办法。客服机器人立即响应,给出详细的解答和售后处理方法,用户问题得到及时处理,情绪得到安抚。

 

智能问答系统结构

    在一个典型的问答过程中,用户的问题通过消息工具发送到机器人,机器人调用问答服务(QAS)对用户的问题进行语义分析,从知识库中定位相关信息或知识,然后生成问题的回答,最后将回答通过消息工具发给用户。其中,有两个主要因素决定了问答系统的用户体验:一个是知识库的质量,包括知识的覆盖面,知识的准确性;另一个是问答算法的准确性,包括语义分析、知识提取和回答生成。

知识库是智能问答机器人的核心。知识库可以是结构化的知识图谱,也可以是数据库表,可以是<问,答>对,也可以是非结构化的文档。不同的知识库结构,决定了上面运行的问答算法。我们的智能问答机器人目前主要使用基于<问,答>对的知识库,格式如下:

[

  {

    "id": 1,

    "domain": "health",

    "question": "吃了不干净的东西导致拉肚子怎么办",

    "answer": "这个考虑是食物变质引起,建议你多喝水,适当运动锻炼,多吃蔬菜水果"

  },

  {

    "id": 2,

    "domain": "computer",

    "question": "如何重装Windows 7",

    "answer": "612个月就重装Windows 7。和从不重装系统相比,能让你的计算机保持最佳状态。方法是插入Windows 7 CD。确保你的计算机设置为从光盘启动。在计算机启动后进入BIOS设置即可。"

  }

]


以知识库为中心,我们的智能问答系统可以划分为两个大部分:离线的知识挖掘部分和在线的智能问答机器人部分,如下图所示。

    


    离线的知识挖掘部分是降低知识库构建成本的关键,尤其是在冷启动构建某个业务的知识库时,需要从企业已有文档、记录、数据库等等数据源收集、挖掘、整理,以获得足够的业务知识覆盖。

    在线的智能问答机器人部分,除了提供问答服务外,还围绕着知识库,构建了两个闭环系统:用户闭环和小二闭环。在机器人的服务过程中,这两个闭环中的信息会不断流动,用户的反馈和小二的反馈会被用来持续改善知识库质量,使得整个智能问答系统具备持续演化和学习的能力。
    

用户闭环:用户在使用机器人的过程中,可以通过反馈满意/不满意,帮助评估机器人的回答是否解决用户问题。对于用户经常反馈不满意的知识点,系统通过知识库工作台(ODC)推给企业小二,由小二来决定是否需要对知识点进行修正。

小二闭环:知识库工作台(ODC)周期性的检查用户访问日志和知识库,对于用户经常问但没有回答的问题、很少被访问到的知识点、检查有潜在冲突的知识点进行筛选,将最可能有价值的部分推给企业小二,由小二来评估、补充和修改,不断改进知识库。

 

智能问答系统算法

     我们的智能问答系统目前主要采用<问,答>对知识库,相应的算法部分主要包括两块:一是关键词提取,用于从倒排索引的知识库中召回可能的候选答案;一是语义相似度计算,用于判断用户问题和知识库中的问题是否是同一个语义。整个算法和模型的技术体系如下图,语义相似度计算综合了由业务知识库训练出来的定制模型,以及业务无关的通用模型。

   

语义相似度计算过程中同时也考虑业务上的同义词和上下位关系词。以下列同义词和上下位词为例,可以精准地解决像“裤子破了”和“物品损坏”的语义匹配问题。

[

  {

    "name": "商品",

    "synonyms": ["宝贝","货物","货","物品","东西","货品"],  /* 同义词 */

    "specifics": ["特殊商品","衣物","玩具"]                 /* 下位词 */

  },

  {

    "name": "特殊商品",

    "specifics": ["贴身衣物","生鲜水果"]

  },

  {

    "name": "贴身衣物",

    "specifics": ["内衣","内裤","文胸"]

  },

  {

    "name": "衣物",

    "specifics": ["衣服","鞋子","袜子","裤子","裙子"]

  }

]

 

智能问答系统接入

在实际应用中,智能问答机器人往往需要和语音识别(ASR)、语音合成(TTS)搭配使用,以提供智能语音的交互能力。我们的问答服务还可以和对话引擎(DM)、预定义领域对话服务(NLU/NLG)等等其它对话组件无缝结合,根据租户的需要组合使用,提供一些通用的能力,如随机闲聊、查天气、查快递、查地图等等。问答服务和其它对话组件一起,采用统一的NLS API接口,作为一个整体对外提供服务。

 

 

总结和展望

我们的智能问答技术目前能比较好的解决一些重复的、相对比较简单的问题的自动解答。未来我们将进一步在以下几个方面推进:

  • 降低知识库的获取和维护成本,运用更多的数据挖掘的手段从大量数据中挖掘知识,减少人工的参与。
  • 支持多种知识库形式,文档、表格、本体、数据库等,充分利用企业已有的知识内容。
  • 更精准的语义分析技术,理解复杂问题,解决简单的推理问题。
目录
相关文章
|
2月前
|
人工智能 自然语言处理 算法
具身智能高校实训解决方案 ----从AI大模型+机器人到通用具身智能
在具身智能的发展历程中,AI 大模型的出现成为了关键的推动力量。高校作为培养未来科技人才的摇篮,需要紧跟这一前沿趋势,开展具身智能实训课程。通过将 AI 大模型与具备 3D 视觉的机器人相结合,为学生搭建一个实践平台。
205 64
|
13天前
|
机器学习/深度学习 人工智能 算法
人工智能与机器人的结合:智能化世界的未来
人工智能与机器人的结合:智能化世界的未来
104 32
|
19天前
|
人工智能 自然语言处理 机器人
机器人迈向ChatGPT时刻!清华团队首次发现具身智能Scaling Laws
清华大学研究团队在机器人操作领域发现了数据规模定律,通过大规模数据训练,机器人策略的泛化性能显著提升。研究揭示了环境和对象多样性的重要性,提出了高效的數據收集策略,使机器人在新环境中成功率达到约90%。这一发现有望推动机器人技术的发展,实现更广泛的应用。
72 26
|
2月前
|
算法 机器人 语音技术
由通义千问驱动的人形机器人具身智能Multi-Agent系统
申昊科技人形机器人小昊,集成通义千问多模态大模型的具身智能系统,旨在讲解销售、迎宾表演等场景。机器人通过语音、动作等方式与用户互动,利用云端大语言模型处理自然语言,结合视觉、听觉等多模态感知技术,实现流畅的人机对话、目标追踪、展厅讲解等功能。
240 4
由通义千问驱动的人形机器人具身智能Multi-Agent系统
|
2月前
|
自然语言处理 算法 机器人
智能电话销售机器人源码搭建部署系统电话机器人源码
智能电话销售机器人源码搭建部署系统电话机器人源码
32 4
|
2月前
|
机器学习/深度学习 传感器 算法
智能机器人在工业自动化中的应用与前景###
本文探讨了智能机器人在工业自动化领域的最新应用,包括其在制造业中的集成、操作灵活性和成本效益等方面的优势。通过分析当前技术趋势和案例研究,预测了智能机器人未来的发展方向及其对工业生产模式的潜在影响。 ###
177 9
|
2月前
|
机器学习/深度学习 人工智能 运维
电话机器人源码-智能ai系统-freeswitch-smartivr呼叫中心-crm
电话机器人源码-智能ai系统-freeswitch-smartivr呼叫中心-crm
67 0
|
2月前
|
机器人 人机交互 语音技术
智能电销机器人源码部署安装好后怎么运行
销售打电销,其中90%电销都是无效的,都是不接,不要等被浪费了这些的精力,都属于忙于筛选意向客户,大量的人工时间都耗费在此了。那么,有这种新型的科技产品,能为你替代这些基本的工作,能为你提升10倍的电销效果。人们都在关心智能语音客服机器人如何高效率工作的问题,今天就为大家简单的介绍下:1、智能筛选系统:电销机器人目前已经达到一个真人式的专家级的销售沟通水平,可以跟客户沟通,筛选意向,记录语音和文字通话记录,快速帮助电销企业筛选意向客户,大大的节约了筛选时间成本和人工成本。2、高速运转:在工作效率上,人工电销员,肯定跟不上智能语音机器人,机器人自动拨出电话,跟客户交谈。电话机
104 0
|
3月前
|
人工智能 搜索推荐 机器人
挑战未来职场:亲手打造你的AI面试官——基于Agents的模拟面试机器人究竟有多智能?
【10月更文挑战第7天】基于Agent技术,本项目构建了一个AI模拟面试机器人,旨在帮助求职者提升面试表现。通过Python、LangChain和Hugging Face的transformers库,实现了自动提问、即时反馈等功能,提供灵活、个性化的模拟面试体验。相比传统方法,AI模拟面试机器人不受时间和地点限制,能够实时提供反馈,帮助求职者更好地准备面试。
113 2
|
5月前
|
机器人 C# 人工智能
智能升级:WPF与人工智能的跨界合作——手把手教你集成聊天机器人,打造互动新体验与个性化服务
【8月更文挑战第31天】聊天机器人已成为现代应用的重要组成部分,提供即时响应、个性化服务及全天候支持。随着AI技术的发展,聊天机器人的功能日益强大,不仅能进行简单问答,还能实现复杂对话管理和情感分析。本文通过具体案例分析,展示了如何在WPF应用中集成聊天机器人,并通过示例代码详细说明其实现过程。使用Microsoft的Bot Framework可以轻松创建并配置聊天机器人,增强应用互动性和用户体验。首先,需在Bot Framework门户中创建机器人项目并编写逻辑。然后,在WPF应用中添加聊天界面,实现与机器人的交互。
143 0

热门文章

最新文章