Java数据结构与算法(十)-图

简介: 1.什么是图图是一种和树相像的数据结构,通常有一个固定的形状,这是有物理或者抽象的问题来决定的。2.邻接如果两个定点被同一条便连接,就称这两个定点是邻接的。

1.什么是图

  • 图是一种和树相像的数据结构,通常有一个固定的形状,这是有物理或者抽象的问题来决定的。

2.邻接

  • 如果两个定点被同一条便连接,就称这两个定点是邻接的。

3.路径

  • 路径是从一个定点到另一个定点经过的边的序列。

4. 连通图和非连通图

  • 至少有一挑路径可以连接所有的定点,那么这个图就是连通的,否则是非连通的。

5.有向图和无向图

  • 有向图的边是有方向的,入只能从A到B,不能从B到A。
  • 无向图的边是没有方向的,可以从A到B,也可以从B到A。

6.带权图

  • 在有些图中,边被富裕了一个权值,权值是一个数字,他可以代表如两个顶点的物理距离,或者是一个顶点到另一个顶点的时间等等,这样的图叫做带权图。

7.程序实现

#include <iostream>

#define  MAXVEX 100      //最大顶点数
#define INFINITY 65535   //最大权值

typedef int EdgeType;    //权值类型自己定义
typedef char VertexType;  //顶点类型自己定义
#pragma once

#pragma region 邻接矩阵结构体
typedef struct 
{
    VertexType vex[MAXVEX];   //顶点表
    EdgeType arg[MAXVEX][MAXVEX];  ///权值表-邻接矩阵
    int numVertexes,numEdges;  //图中的边数和顶点数
}GraphArray;

#pragma endregion

#pragma region 邻接表结构体
//边表结点
typedef struct EdgeNode
{
    int nNodevex;     //邻接点的点表中结点的坐标
    EdgeType nNodeWeight;   //用于网图中边的权值
    EdgeNode* next;       //链域,指向下一个邻接点
}EdgeNode,*pEdgeNode;
//顶点表结点
typedef struct VertexNode
{
    VertexType nNodeData;   //顶点表中存储的数据
    pEdgeNode pFirstNode;   //顶点表和边表中关联指针,指向边表头指针

}VertexNode,pVertexNode,VertexList[MAXVEX];
//图结构
typedef struct
{
    VertexList vertexList;
    int numVertess,numEdges;
}GraphList;

#pragma endregion

class GraphData
{
public:
    GraphData(void);
    ~GraphData(void);
    #pragma region 创建邻接矩阵
    void CreateGraphArray(GraphArray* pGraphArray,int numVer,int numEdegs);
    int GetGraphLocation(GraphArray* pGraphArrray,char chpoint);
    #pragma endregion

    #pragma region 创建邻接表
    void CreateGraphList(GraphList* pList,int numVer,int numEdegs);
    int GetGraphListLocation(GraphList* pList,char chpoint);
    #pragma endregion

};
#include "GraphData.h"


GraphData::GraphData(void)
{
}


GraphData::~GraphData(void)
{
}

int GraphData::GetGraphLocation(GraphArray* pGraphArrray,char chpoint)
{
    int i = 0;
    for (i = 0;i< pGraphArrray->numVertexes;i++)
    {
        if (pGraphArrray->vex[i] == chpoint)
        {
            break;;
        }
    }
    if (i >= pGraphArrray->numVertexes)
    {
        return -1;
    }
    return i;
}
/// <summary>
/// 创建邻接矩阵
/// </summary>        
void GraphData::CreateGraphArray(GraphArray* pGraphArray,int numVer,int numEdegs)
{
    int weight = 0;
    pGraphArray->numVertexes = numVer;
    pGraphArray->numEdges = numEdegs;
    
    //创建顶点表
    for (int i= 0; i < numVer;i++)
    {
        pGraphArray->vex[i] = getchar();
        while(pGraphArray->vex[i] == '\n')
        {
            pGraphArray->vex[i] = getchar();
        }
    }

    //创建邻接表的边矩阵
    for (int i = 0; i < numEdegs; i++)
    {
        for (int j = 0;j < numEdegs ; j++)
        {
            pGraphArray->arg[i][j] = INFINITY;
        }        
    }
    for(int k = 0; k < pGraphArray->numEdges; k++)
    {
        char p, q;
        printf("输入边(vi,vj)上的下标i,下标j和权值:\n");

        p = getchar();
        while(p == '\n')
        {
            p = getchar();
        }
        q = getchar();
        while(q == '\n')
        {
            q = getchar();
        }
        scanf("%d", &weight);    

        int m = -1;
        int n = -1;
        m = GetGraphLocation(pGraphArray, p);
        n = GetGraphLocation(pGraphArray, q);
        if(n == -1 || m == -1)
        {
            fprintf(stderr, "there is no this vertex.\n");
            return;
        }
        //getchar();
        pGraphArray->arg[m][n] = weight;
        pGraphArray->arg[n][m] = weight;  //因为是无向图,矩阵对称
    }
    
}

#pragma region
void GraphData::CreateGraphList(GraphList* pList,int numVer,int numEdegs)
{
    int weight = 0;
    GraphList *pGraphList = pList;
    pGraphList->numVertess = numVer;
    pGraphList->numEdges = numEdegs;
    EdgeNode* firstNode,*secondNode;
    //创建顶点表
    for (int i= 0; i < numVer;i++)
    {
        pGraphList->vertexList[i].nNodeData = getchar();
        pGraphList->vertexList[i].pFirstNode = NULL;
        while(pGraphList->vertexList[i].nNodeData == '\n')
        {
            pGraphList->vertexList[i].nNodeData = getchar();
        }
    }

    //创建边表    
    for(int k = 0; k < pGraphList->numEdges; k++)
    {
        char p, q;
        printf("输入边(vi,vj)上的下标i,下标j和权值:\n");

        p = getchar();
        while(p == '\n')
        {
            p = getchar();
        }
        q = getchar();
        while(q == '\n')
        {
            q = getchar();
        }
        scanf("%d", &weight);    

        int m = -1;
        int n = -1;
        m = GetGraphListLocation(pGraphList, p);
        n = GetGraphListLocation(pGraphList, q);
        if(n == -1 || m == -1)
        {
            fprintf(stderr, "there is no this vertex.\n");
            return;
        }
        //getchar();
        //字符p在顶点表的坐标为m,与坐标n的结点建立联系权重为weight
        firstNode = new EdgeNode();
        firstNode->nNodevex = n;
        firstNode->next = pGraphList->vertexList[m].pFirstNode;
        firstNode->nNodeWeight = weight;
        pGraphList->vertexList[m].pFirstNode = firstNode;

        //第二个字符second
        secondNode = new EdgeNode();
        secondNode->nNodevex = m;
        secondNode->next = pGraphList->vertexList[n].pFirstNode;
        secondNode->nNodeWeight = weight;
        pGraphList->vertexList[n].pFirstNode = secondNode;

    }
}

int GraphData::GetGraphListLocation(GraphList* pList,char chpoint)
{
    GraphList *pGraphList = pList;
    int i = 0;
    for (i = 0;i< pGraphList->numVertess;i++)
    {
        if (pGraphList->vertexList[i].nNodeData == chpoint)
        {
            break;;
        }
    }
    if (i >= pGraphList->numVertess)
    {
        return -1;
    }
    return i;
}

#pragma endregion
#include <iostream>
#include "GraphData.h"
using namespace std;
//

void PrintGrgph(GraphList *pGraphList)
{
    int i =0;
    while(pGraphList->vertexList[i].pFirstNode != NULL && i<MAXVEX)
    {
        printf("顶点:%c  ",pGraphList->vertexList[i].nNodeData);
        EdgeNode *e = NULL;
        e = pGraphList->vertexList[i].pFirstNode;
        while(e != NULL)
        {
            printf("%d  ", e->nNodevex);
            e = e->next;
        }
        i++;
        printf("\n");
    }
    
}
int main()
{
    int numVexs,numEdges;
    GraphData* pTestGraph = new GraphData();
    GraphArray graphArray;
    GraphArray* pGraphArray = &graphArray;
    GraphList* pGgraphList = new GraphList();
    
    cout<<"输入顶点数和边数"<<endl;
    cin>>numVexs>>numEdges;
    cout<<"顶点数和边数为:"<<numVexs<<numEdges<<endl;

    /*pTestGraph->CreateGraphArray(pGraphArray,numVexs,numEdges);
    for(int i = 0; i< numEdges;i++)
    {
        for (int j = 0;j< numEdges;j++)
        {
            cout<<pGraphArray->arg[i][j];
        }
        cout<<endl;
    }*/
    pTestGraph->CreateGraphList(pGgraphList,numVexs,numEdges);
    PrintGrgph(pGgraphList);
    system("pause");
}

借鉴文章不归路

相关文章
|
4月前
|
设计模式 算法 搜索推荐
Java 设计模式之策略模式:灵活切换算法的艺术
策略模式通过封装不同算法并实现灵活切换,将算法与使用解耦。以支付为例,微信、支付宝等支付方式作为独立策略,购物车根据选择调用对应支付逻辑,提升代码可维护性与扩展性,避免冗长条件判断,符合开闭原则。
571 35
|
9月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
4月前
|
存储 算法 搜索推荐
《数据之美》:Java数据结构与算法精要
本系列深入探讨数据结构与算法的核心原理及Java实现,涵盖线性与非线性结构、常用算法分类、复杂度分析及集合框架应用,助你提升程序效率,掌握编程底层逻辑。
|
9月前
|
存储 缓存 监控
上网行为监控系统剖析:基于 Java LinkedHashMap 算法的时间序列追踪机制探究
数字化办公蓬勃发展的背景下,上网行为监控系统已成为企业维护信息安全、提升工作效能的关键手段。该系统需实时记录并深入分析员工的网络访问行为,如何高效存储和管理这些处于动态变化中的数据,便成为亟待解决的核心问题。Java 语言中的LinkedHashMap数据结构,凭借其独有的有序性特征以及可灵活配置的淘汰策略,为上网行为监控系统提供了一种兼顾性能与功能需求的数据管理方案。本文将对LinkedHashMap在上网行为监控系统中的应用原理、实现路径及其应用价值展开深入探究。
214 3
|
9月前
|
人工智能 算法 NoSQL
LRU算法的Java实现
LRU(Least Recently Used)算法用于淘汰最近最少使用的数据,常应用于内存管理策略中。在Redis中,通过`maxmemory-policy`配置实现不同淘汰策略,如`allkeys-lru`和`volatile-lru`等,采用采样方式近似LRU以优化性能。Java中可通过`LinkedHashMap`轻松实现LRUCache,利用其`accessOrder`特性和`removeEldestEntry`方法完成缓存淘汰逻辑,代码简洁高效。
365 0
|
10月前
|
前端开发 Java
java实现队列数据结构代码详解
本文详细解析了Java中队列数据结构的实现,包括队列的基本概念、应用场景及代码实现。队列是一种遵循“先进先出”原则的线性结构,支持在队尾插入和队头删除操作。文章介绍了顺序队列与链式队列,并重点分析了循环队列的实现方式以解决溢出问题。通过具体代码示例(如`enqueue`入队和`dequeue`出队),展示了队列的操作逻辑,帮助读者深入理解其工作机制。
329 1
|
4月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
8月前
|
存储 算法 安全
Java中的对称加密算法的原理与实现
本文详细解析了Java中三种常用对称加密算法(AES、DES、3DES)的实现原理及应用。对称加密使用相同密钥进行加解密,适合数据安全传输与存储。AES作为现代标准,支持128/192/256位密钥,安全性高;DES采用56位密钥,现已不够安全;3DES通过三重加密增强安全性,但性能较低。文章提供了各算法的具体Java代码示例,便于快速上手实现加密解密操作,帮助用户根据需求选择合适的加密方案保护数据安全。
536 58
|
7月前
|
机器学习/深度学习 算法 Java
Java实现林火蔓延路径算法
记录正在进行的森林防火项目中林火蔓延功能,本篇文章可以较好的实现森林防火蔓延,但还存在很多不足,如:很多参数只能使用默认值,所以蔓延范围仅供参考。(如果底层设备获取的数据充足,那当我没说)。注:因林火蔓延涉及因素太多,如静可燃物载量、矿质阻尼系数等存在估值,所以得出的结果仅供参考。
138 4
|
7月前
|
存储 负载均衡 算法
我们来说一说 Java 的一致性 Hash 算法
我是小假 期待与你的下一次相遇 ~
247 1

热门文章

最新文章