在训练的过程中降低学习率

简介: 随着学习的进行,深度学习的学习速率逐步下降  为什么比  固定的学习速率 得到的结果更加准确?如上图所示,曲线代表损失值,小球一开始位于(1)处,假设学习速率设置为 △ v,那么根据梯度下降,损失值将在(1)  (2)之间来回移动,无法到达最小值(3)处。
随着学习的进行,深度学习的学习速率逐步下降  为什么比  固定的学习速率 得到的结果更加准确?
img_1629cdd9e398551ac7b3cefec2758e44.jpe

如上图所示,曲线代表损失值,小球一开始位于(1)处,假设学习速率设置为 △ v,那么根据梯度下降,损失值将在(1)  (2)之间来回移动,无法到达最小值(3)处。要想到达(3),只能降低学习速率。

keras中实现方法:
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001)
#并且作为callbacks进入generator,开始训练
history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size),
                              epochs = epochs, validation_data = (X_val,Y_val),
                              verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size
                              , callbacks=[learning_rate_reduction])

文档:
ReduceLROnPlateau
keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, verbose=0, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0)

当评价指标不在提升时,减少学习率。当学习停滞时,减少2倍或10倍的学习率常常能获得较好的效果。该回调函数检测指标的情况,如果在patience个epoch中看不到模型性能提升,则减少学习率

参数

  • monitor:被监测的量
  • factor:每次减少学习率的因子,学习率将以lr = lr*factor的形式被减少
  • patience:当patience个epoch过去而模型性能不提升时,学习率减少的动作会被触发
  • mode:‘auto’,‘min’,‘max’之一,在min模式下,如果检测值触发学习率减少。在max模式下,当检测值不再上升则触发学习率减少。
  • epsilon:阈值,用来确定是否进入检测值的“平原区”
  • cooldown:学习率减少后,会经过cooldown个epoch才重新进行正常操作
  • min_lr:学习率的下线
     













目前方向:图像拼接融合、图像识别 联系方式:jsxyhelu@foxmail.com
目录
相关文章
对比不同学习率对模型结果的影响
对比不同学习率对模型结果的影响
1199 0
对比不同学习率对模型结果的影响
|
机器学习/深度学习 异构计算
使用Fastai中的学习率查找器和渐进式调整大小提高训练效率
使用Fastai中的学习率查找器和渐进式调整大小提高训练效率
252 0
使用Fastai中的学习率查找器和渐进式调整大小提高训练效率
|
机器学习/深度学习
采用附加动量法和自适应学习率设计来改进bp神经网络的迭代速度,如果不迭代学习率会提高精度;迭代学习率(自适应)会加快收敛,但精度降低(Matlab代码实现)
采用附加动量法和自适应学习率设计来改进bp神经网络的迭代速度,如果不迭代学习率会提高精度;迭代学习率(自适应)会加快收敛,但精度降低(Matlab代码实现)
145 0
|
9月前
|
机器学习/深度学习 监控
大模型开发:你如何在保持模型性能的同时减少过拟合的风险?
为应对大模型过拟合,采用正则化(L1/L2/Dropout)、早期停止训练以监控验证集性能,通过数据增强提升模型泛化能力,选择适合问题复杂度的模型,使用集成方法(如Bagging/Boosting)增强稳定性,以及利用预训练模型进行迁移学习。这些策略结合使用能有效降低过拟合风险,提高模型泛化性能。
366 2
|
机器学习/深度学习 算法 PyTorch
机器学习-学习率:从理论到实战,探索学习率的调整策略
机器学习-学习率:从理论到实战,探索学习率的调整策略
386 0
|
8月前
偏微分方程有了基础模型:样本需求数量级减少,14项任务表现最佳
【6月更文挑战第16天】研究人员提出Poseidon模型,减少求解偏微分方程(PDEs)的样本需求,提升效率。在15个挑战任务中,该模型在14项表现最优。基于scOT的多尺度架构, Poseidon降低了计算成本,但仍有泛化和资源限制。[论文链接](https://arxiv.org/pdf/2405.19101)**
110 4
|
机器学习/深度学习 人工智能 算法
不确定性助益学习准确率,GPU训练预测性DNN误差更少、效果更好
有学者发现在 GPU 而不是 CPU 上训练的机器学习系统在训练过程中可能包含更少的误差,并产生更好的结果。这一发现与一般的理解相矛盾,即 GPU 只具有加速功能,而不是使训练结果更好。
不确定性助益学习准确率,GPU训练预测性DNN误差更少、效果更好
|
机器学习/深度学习
DL:深度学习模型优化之模型训练技巧总结之适时自动调整学习率实现代码
DL:深度学习模型优化之模型训练技巧总结之适时自动调整学习率实现代码
|
9月前
|
机器学习/深度学习 自然语言处理 算法
【大模型】关于减轻 LLM 训练数据和算法中偏差的研究
【5月更文挑战第6天】【大模型】关于减轻 LLM 训练数据和算法中偏差的研究

热门文章

最新文章