为基于OpenCV的图像处理程序编写界面—关于QT\MFC\CSharp的选择以及GOCW的介绍

简介: 基于OpenCV编写图像处理项目,除了算法以外,比较重要一个问题就是界面设计问题。对于c++语系的程序员来说,一般来说有QT/MFC两种考虑。QT的确功能强大,特别是QML编写android界面很有一套(https://www.cnblogs.com/jsxyhelu/p/8286476.html),在树莓派上进行设计也很方便(https://www.cnblogs.com/jsxyhelu/p/7839062.html);但是使用QT的一个现实问题就是和现有平台的结合,比如客户需要将结果导出到excel中,使用QT就比较别扭(当然不是说不可以)。
        基于OpenCV编写图像处理项目,除了算法以外,比较重要一个问题就是界面设计问题。对于c++语系的程序员来说,一般来说有QT/MFC两种考虑。QT的确功能强大,特别是QML编写android界面很有一套( https://www.cnblogs.com/jsxyhelu/p/8286476.html),在树莓派上进行设计也很方便( https://www.cnblogs.com/jsxyhelu/p/7839062.html);但是使用QT的一个现实问题就是和现有平台的结合,比如客户需要将结果导出到excel中,使用QT就比较别扭(当然不是说不可以)。所以现在我一般这样来做:对于Android和PI,或者需要在Linux上运行的项目,使用QT编写界面,调用Opencv函数;对于需要在windows上运行的项目,使用MFC编写界面,直接就可以引用OpenCV。
        有人会吐槽MFC使用起来非常麻烦,这点我非常同意。但MFC经过这么多年的发展,今日仍有活力,并且短时间内不会消失。因为相比较其他一些所见即所得的语言和环境来说(QT/Csharp),mfc的消息映射机制和坐标体系等,的确有它的优势,对于图像处理程序来说尤其如此;加以积累,能够快速做出很多专业的东西;近期出现的ribbon界面也为mfc加分不少( https://www.cnblogs.com/jsxyhelu/p/9209052.html
       选择了MFC这个方向,思考图像处理程序问题,一般来说分为“处理图像”和"处理视频"两类:对于图像处理来说,我提供的GOPaint框架( https://www.cnblogs.com/jsxyhelu/p/6440910.html)能够提供一个基本的静态图像处理框架;而GOMFCTemplate2( https://www.cnblogs.com/jsxyhelu/p/GOMFCTemplate2.html)则适合用来处理视频。这两种都 分别成功运用于多种视频处理项目中。
       但是这里我想更进一步:希望能够用Csharp编写界面,因为它更好用;但是又不想引入EmguCV类似的库,因为里面很多东西不是我需要的。那么最直接的方法就是使用Csharp调用基于Opencv编写的类库文件(Dll)的,我取名叫做GreenOpenCsharpWarper(GOCW)
       经过比较长时间的探索研究,目前的GOCW已经可以直接以函数的形式在内存中传递bitmap和Mat对象,达到了函数级别的应用。因为这里涉及到托管代码编写,也就是CLR程序编写,所以有比较复杂的地方;为了展现GOCW的优良特性,我编写实现GOGPY项目,也就是一个"Csharp编写界面,OpenCV实现算法的实时视频处理程序”,相关细节都包含其中。之所以叫“GPY”,是采集硬件这块,我采用了成像质量较好的高拍仪设备(GaoPaiYi)。
       这里简单将最核心内容进行讲解。GOCW的核心问题,无非就是基于CLR之上的两个方向的数据流转换。核心函数为
Bitmap ^  GOClrClass : :testMethod(cli : :array < unsigned  char > ^ pCBuf1)
{
    pin_ptr <System : :Byte > p1  =  &pCBuf1[ 0];
     unsigned  char * pby1  = p1;
    cv : :Mat img_data1(pCBuf1 - >Length, 1,CV_8U,pby1);
    cv : :Mat img_object  = cv : :imdecode(img_data1,IMREAD_UNCHANGED); //获得数据到img_object中去
     //////////////////////////////////处理过程///////////////////////////////////////
    cvtColor(img_object,img_object, 40);
    
     /////////////////////////////////////////////////////////////////////////////////
    Bitmap ^ bb  = MatToBitmap(img_object);
     if ( !img_object.data)
         return nullptr;
    std : :vector <uchar > buf;
    cv : :imencode( ".jpg", img_object, buf);
     return bb;
}
以及
System : :Drawing : :Bitmap ^ MatToBitmap( const cv : :Mat & img)
{
     if (img.type()  != CV_8UC3)
    {
         throw gcnew NotSupportedException( "Only images of type CV_8UC3 are supported for conversion to Bitmap");
    }
     //create the bitmap and get the pointer to the data
    PixelFormat fmt(PixelFormat : :Format24bppRgb);
    Bitmap  ^bmpimg  = gcnew Bitmap(img.cols, img.rows, fmt);
    BitmapData  ^data  = bmpimg - >LockBits(System : :Drawing : :Rectangle( 00, img.cols, img.rows), ImageLockMode : :WriteOnly, fmt);
     //byte *dstData = reinterpret_cast<byte*>(data->Scan0.ToPointer());
    Byte  *dstData  =  reinterpret_cast <Byte * >(data - >Scan0.ToPointer());
     unsigned  char  *srcData  = img.data;
     for ( int row  =  0; row  < data - >Height;  ++row)
    {
        memcpy( reinterpret_cast < void * >( &dstData[row *data - >Stride]),  reinterpret_cast < void * >( &srcData[row *img.step]), img.cols *img.channels());
    }
    bmpimg - >UnlockBits(data);
     return bmpimg;
}
 
而在chsarp中,直接
Bitmap b = new Bitmap(cam.Width, cam.Height, cam.Stride, PixelFormat.Format24bppRgb, m_ip);
// If the image is upsidedown
b.RotateFlip(RotateFlipType.RotateNoneFlipY);
srcImage = b;
if (picPreview.Image != null)
    picPreview.Image.Dispose();
//调用clr+opencv图像处理模块
MemoryStream ms = new MemoryStream();
b.Save(ms, System.Drawing.Imaging.ImageFormat.Jpeg);
byte[] bytes = ms.GetBuffer();
Bitmap bitmap = client.testMethod(bytes);
就可以调用,并且获得结果。
 
以下内容为2017年更新的内容,适当参考:
一、CLR编写的DLL部分
1、按照正常方法引入Opencv;
2、提供接口函数,进行图像处理(这里只是实现了cvtColor,实际过程中可以用自己编写的复杂函数)
String ^  Class1 : :Method(cli : :array < unsigned  char > ^ pCBuf1)
{
     pin_ptr <System : :Byte > p1  =  &pCBuf1[ 0];
      unsigned  char * pby1  = p1;
     cv : :Mat img_data1(pCBuf1 - >Length, 1,CV_8U,pby1);
     cv : :Mat img_object  = cv : :imdecode(img_data1,IMREAD_UNCHANGED);
      //////////////////////////////////处理过程/////////
     cvtColor(img_object,img_object, 40);
      /////////////////////////////////////////////////////////////////////////////////
      if ( !img_object.data)
         return nullptr;
      //获得目录,保存文件
     cv : :imwrite( "c:/Method.jpg",img_object);
      return  "c:/Method.jpg";
}
 
String ^  Class1 : :Method2(cli : :array < unsigned  char > ^ pCBuf1)
{
    pin_ptr <System : :Byte > p1  =  &pCBuf1[ 0];
     unsigned  char * pby1  = p1;
    cv : :Mat img_data1(pCBuf1 - >Length, 1,CV_8U,pby1);
    cv : :Mat img_object  = cv : :imdecode(img_data1,IMREAD_UNCHANGED);
     //////////////////////////////////处理过程///////////////////////
    cvtColor(img_object,img_object, 6);
  /////////////////////////////////////////////////////////////////////////////////
     if ( !img_object.data)
         return nullptr;
     //获得目录,保存文件
    cv : :imwrite( "c:/Method2.jpg",img_object);
     return  "c:/Method2.jpg";
}
二、Winform调用接口部分(TIP:不仅可以用Winform调用,asp.net/webservice都是可以调用的)
1、直接引用clr dll
2、编写helper文件(应该也可以叫做 warpper),通过外部IO的方法获取clr dll的文件
  class GOCsharpHelper
    {
        Class1 client  =  new Class1();
        string strResult1  = null;
        string strResult2  = null;
         //输入参数是string或bitmap
         public Bitmap ImageProcess(string ImagePath){
            Image  ImageTemp  = Bitmap.FromFile(ImagePath);
             return ImageProcess(ImageTemp);
        }
         //输出结果是bitmap
         public Bitmap ImageProcess(Image image)
        {
            MemoryStream ms  =  new MemoryStream();
            image.Save(ms, System.Drawing.Imaging.ImageFormat.Jpeg);
            byte[] bytes  = ms.GetBuffer();
            strResult1  = client.Method(bytes);
            Image ImageResult  = Bitmap.FromFile(strResult1);
             return (Bitmap)ImageResult;
        }
         public Bitmap ImageProcess2(string ImagePath)
        {
            Image ImageTemp  = Bitmap.FromFile(ImagePath);
             return ImageProcess2(ImageTemp);
        }
         //输出结果是bitmap
         public Bitmap ImageProcess2(Image image)
        {
            MemoryStream ms  =  new MemoryStream();
            image.Save(ms, System.Drawing.Imaging.ImageFormat.Jpeg);
            byte[] bytes  = ms.GetBuffer();
            strResult2  = client.Method2(bytes);
            Image ImageResult  = Bitmap.FromFile(strResult2);
             return (Bitmap)ImageResult;
        }
         public  void Clear()
        {
             if (File.Exists(strResult1))
                File.Delete(strResult1);
             if (File.Exists(strResult2))
                File.Delete(strResult2);
        }
    }
3、使用例子(注意控件的dispose):
 
    private  void button2_Click(object sender, EventArgs e)
        {
             if (pictureBox1.Image  != null)
                pictureBox1.Image.Dispose();
             if (pictureBox2.Image  != null)
                pictureBox2.Image.Dispose();
           Image image1  = gocsharphelper.ImageProcess( " E:/sandbox/logo.jpg");
           pictureBox1.Image  = image1;
           Image image2  = gocsharphelper.ImageProcess2( "E:/sandbox/lena.jpg");
           pictureBox2.Image  = image2;
         
        }
 
三、解释说明 
使用外部I/O不仅仅是权宜之计,实际上Opencv的Decode使用的就是外部I/O。就目前研究的水平来说,这是最稳定的。
目前搭建成功的框架已经能够完成“csharp调用opencv的”目标,并且在调试、参数传递方面都很强。
如果是处理静态图片,已经够用。
四、杀手程序
GOImageResearch:
使用这种方法编写的图像处理预分析程序。



目前方向:图像拼接融合、图像识别 联系方式:jsxyhelu@foxmail.com
目录
相关文章
|
2月前
|
算法 计算机视觉
基于qt的opencv实时图像处理框架FastCvLearn实战
本文介绍了一个基于Qt的OpenCV实时图像处理框架FastCvLearn,通过手撕代码的方式详细讲解了如何实现实时人脸马赛克等功能,并提供了结果展示和基础知识回顾。
106 7
基于qt的opencv实时图像处理框架FastCvLearn实战
|
2月前
|
文字识别 计算机视觉 开发者
基于QT的OCR和opencv融合框架FastOCRLearn实战
本文介绍了在Qt环境下结合OpenCV库构建OCR识别系统的实战方法,通过FastOCRLearn项目,读者可以学习Tesseract OCR的编译配置和在Windows平台下的实践步骤,文章提供了技术资源链接,帮助开发者理解并实现OCR技术。
133 9
基于QT的OCR和opencv融合框架FastOCRLearn实战
|
2月前
|
C语言 Android开发 C++
基于MTuner软件进行qt的mingw编译程序的内存泄漏检测
本文介绍了使用MTuner软件进行Qt MinGW编译程序的内存泄漏检测的方法,提供了MTuner的下载链接和测试代码示例,并通过将Debug程序拖入MTuner来定位内存泄漏问题。
基于MTuner软件进行qt的mingw编译程序的内存泄漏检测
|
1月前
|
机器学习/深度学习 算法 计算机视觉
【Python篇】Python + OpenCV 全面实战:解锁图像处理与视觉智能的核心技能
【Python篇】Python + OpenCV 全面实战:解锁图像处理与视觉智能的核心技能
71 2
|
2月前
|
计算机视觉
基于QT的opencv插件框架qtCvFrameLearn实战
这篇文章详细介绍了如何基于Qt框架开发一个名为qtCvFrameLearn的OpenCV插件,包括项目配置、插件加载、Qt与OpenCV图像转换,以及通过各个插件学习OpenCV函数的使用,如仿射变换、卡通效果、腐蚀、旋转和锐化等。
45 10
|
2月前
|
机器学习/深度学习 Java 计算机视觉
opencv4.5.5+qt5.15.2+vtk9.1+mingw81_64编译记录
本文记录了使用mingw81_64编译OpenCV 4.5.5、Qt 5.15.2、VTK 9.1的详细过程,包括编译结果截图、编译步骤、遇到的问题及其解决方案,以及相关参考链接。文中还提到了如何编译boost源码为静态库,并提供了测试代码示例。
opencv4.5.5+qt5.15.2+vtk9.1+mingw81_64编译记录
|
1月前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
344 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
2月前
|
算法 计算机视觉
opencv图像形态学
图像形态学是一种基于数学形态学的图像处理技术,它主要用于分析和修改图像的形状和结构。
49 4
|
2月前
|
存储 计算机视觉
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
本文介绍了使用OpenCV进行图像读取、显示和存储的基本操作,以及如何绘制直线、圆形、矩形和文本等几何图形的方法。
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
下一篇
无影云桌面