数据管理(DMS):让你轻松管理云端数据

简介: 阿里云数据管理(DMS)产品向用户提供了多种数据库的数据管理操作,支持的数据库包括MySQL、SQL Server、PostgreSQL、MongoDB、Redis等。无需安装、配置就可以轻松管理云上数据。

随着企业信息系统越来越多的往云上迁移,企业内部的很多研发与协作流程也相应的发生了一些改变。作为企业核心资产的数据,它的管理方式也在发生变化。

云数据库(ApsaraDB)可以帮助企业快速的构建企业数据库环境。无论是关系型数据库MySQL、SQL Server、PostgreSQL、OceanBase,还是MongoDB、Redis、Memcache等,使用云数据库(ApsaraDB)可以让企业在几分钟的时间内快速完成数据库服务的搭建。

那么,如何管理企业环境中多种数据库中的数据呢?传统的方式带来如下问题:

  • 给企业带来采购成本 (例如企业需要采购特定数据管理软件)
  • 构建云上、云下的联通性环境 (为了安全,数据通常只有私网IP)

  • 配置管理的运行环境 (例如可能需要配置phpMyAdmin运行环境)

  • 数据管理操作的审计比较困难

阿里云数据库提供了一套完整的解决方案:数据管理(Data Management),我们简称“DMS”。

DMS支持MySQL、SQL Server、PostgreSQL、MongoDB、Redis等关系型数据库和NoSQL的数据库管理。你可以用DMS对数据、结构、SQL、变更日志、运行状态、审计数据等进行管理。

使用DMS有如下优势:

  • 免安装,直接管理云上数据

  • 可视化的管理数据,便捷安全

  • 支持多种数据源,无需切换管理工具

  • 免费使用

  • 所有操作可审计、快速查看

示例:使用DMS创建一张表


示例:使用DMS执行一条SQL

示例:可视化的会话管理


示例:快速查看表数据量统计


传送门:数据管理(DMS)

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
相关文章
|
4月前
|
数据采集 存储 安全
数据治理≠数据管理!90%的企业都搞错了重点!
在数字化转型中,数据不一致、质量差、安全隐患等问题困扰企业。许多组织跳过基础的数据管理,直接进行数据治理,导致方案难以落地。数据管理涵盖数据生命周期中的采集、存储、处理等关键环节,决定了数据是否可用、可靠。本文详解数据管理的四大核心模块——数据质量、元数据、主数据与数据安全,并提供构建数据管理体系的四个阶段:评估现状、确定优先级、建立基础能力与持续改进,助力企业夯实数据基础,推动治理落地。
|
8月前
|
存储 数据管理 数据格式
数据治理 vs. 数据管理:别再傻傻分不清!
数据治理 vs. 数据管理:别再傻傻分不清!
432 10
|
4月前
|
数据采集 存储 SQL
数据管理四部曲:元数据管理、数据整合、数据治理、数据质量管控
老张带你搞定企业数据管理难题!数据找不到、看不懂、用不好?关键在于打好元数据管理、数据整合、数据治理和数据质量管控四大基础。四部曲环环相扣,助你打通数据孤岛,提升数据价值,实现精准决策与业务增长。
数据管理四部曲:元数据管理、数据整合、数据治理、数据质量管控
|
6月前
|
数据采集 人工智能 监控
企业数据来源杂、质量差,如何通过主数据管理解决?如何确保数据可信、一致和可用?
本文三桥君系统介绍了主数据管理(MDM)在企业数字化转型中的关键作用。产品专家三桥君从数据清洗、治理、处理到流转四个维度,详细阐述了如何通过标准化流程将数据转化为企业核心资产。重点包括:数据清洗的方法与工具应用;数据治理的组织保障与制度设计;数据处理的三大核心动作;以及数据流转的三种模式与安全控制。专家三桥君强调主数据管理能够推动企业从"经验决策"转向"数据驱动",并提出构建统一数据服务网关、"数据血缘图谱"等实战建议,为企业数字化转型提供系统化解决方案。
249 0
|
人工智能 关系型数据库 分布式数据库
拥抱Data+AI|“全球第一”雅迪如何实现智能营销?DMS+PolarDB注入数据新活力
针对雅迪“云销通App”的需求与痛点,本文将介绍阿里云瑶池数据库DMS+PolarDB for AI提供的一站式Data+AI解决方案,助力销售人员高效用数,全面提升销售管理效率。
|
11月前
|
人工智能 Cloud Native 多模数据库
实力见证!数据管理服务DMS、云原生多模数据库Lindorm荣获“2024技术卓越奖”
实力见证!数据管理服务DMS、云原生多模数据库Lindorm荣获“2024技术卓越奖”
273 1
|
11月前
|
数据管理 关系型数据库 MySQL
数据管理服务DMS支持MySQL数据库的无锁结构变更
本文介绍了使用Sysbench准备2000万数据并进行全表字段更新的操作。通过DMS的无锁变更功能,可在不锁定表的情况下完成结构修改,避免了传统方法中可能产生的锁等待问题。具体步骤包括:准备数据、提交审批、执行变更及检查表结构,确保变更过程高效且不影响业务运行。
631 2
|
12月前
|
存储 人工智能 数据管理
云端问道17期方案教学-AI场景下的对象存储OSS数据管理实践
本文介绍了AI场景下的对象存储OSS数据管理实践,由阿里云技术专家明锦分享。主要内容分为两部分:1) AI场景下对象存储实践方案,包括对象存储的应用、优势及在模型推理中的优化;2) OSS常用工具介绍,如OSSFS、Python SDK、Go SDK等,并详细说明了这些工具的特点和使用场景。文中还探讨了不同模式下的性能优化,以及即将推出的OS Connector for AI/ML工具,旨在提升数据下载速度和IO性能。
306 0
|
物联网 数据管理 Apache
拥抱IoT浪潮,Apache IoTDB如何成为你的智能数据守护者?解锁物联网新纪元的数据管理秘籍!
【8月更文挑战第22天】随着物联网技术的发展,数据量激增对数据库提出新挑战。Apache IoTDB凭借其面向时间序列数据的设计,在IoT领域脱颖而出。相较于传统数据库,IoTDB采用树形数据模型高效管理实时数据,具备轻量级结构与高并发能力,并集成Hadoop/Spark支持复杂分析。在智能城市等场景下,IoTDB能处理如交通流量等数据,为决策提供支持。IoTDB还提供InfluxDB协议适配器简化迁移过程,并支持细致的权限管理确保数据安全。综上所述,IoTDB在IoT数据管理中展现出巨大潜力与竞争力。
502 1

热门文章

最新文章