深度学习优化算法入门:二、动量、RMSProp、Adam

简介: 编者按:DRDO研究人员Ayoosh Kathuria深入浅出地介绍了牛顿法、动量法、RMSProp、Adam优化算法。 本系列的上一篇文章介绍了随机梯度下降,以及如何应对陷入局部极小值或鞍点的问题。

编者按:DRDO研究人员Ayoosh Kathuria深入浅出地介绍了牛顿法、动量法、RMSProp、Adam优化算法。


554a2f7cd68d9702460f606472458ca79c1f1f8a

本系列的上一篇文章介绍了随机梯度下降,以及如何应对陷入局部极小值或鞍点的问题。在这篇文章中,我们将查看另一个困扰神经网络训练的问题,病态曲率。

局部极小值和鞍点会使训练停滞,而病态曲率则会减慢训练速度,以至于机器学习从业者可能会觉得搜索收敛到了一个次优极小值。让我们深入了解下什么是病态曲率。

病态曲率

考虑下面的损失曲面。

a9d1ada31e0df8d43de5bd5e4f9102fb26f22e57

如你所见,我们从随机点开始,渐渐进入蓝色的沟壑区。(颜色表示损失函数在特定点的值是高是低,红色表示高值,蓝色表示低值。)

在到达最小值之前,我们需要首先穿过沟壑区,也就是病态曲率。让我们放大一下这一区域,看看为什么称病态?

11a773375ea07dd861d70b3378029b8e955ae56e

如上图所示,梯度下降在沟壑区的脊间反复振荡,极其缓慢地向最小值处移动。这是因为w1方向要陡峭得多。

考虑下图中A点的梯度,可以分解为w1、w2方向的两个分量。w1方向的梯度要大很多,因此梯度的方向大为偏向w1,而不是w2(但w2才是能够更快到达最小值处的梯度方向)。

fde238fa39360f52a6b1d351e0d74c7b6126ead4

通常情况下,我们使用低学习率来应对这样的反复振荡,但在病态曲率区域使用低学习率,可能要花很多时间才能达到最小值处。事实上,有论文报告,防止反复振荡的足够小的学习率,也许会导致从业者相信损失完全没有改善,干脆放弃训练。

大概,我们需要找到一种方法,首先缓慢地进入病态曲率的平坦底部,然后加速往最小值方向移动。二阶导数可以帮助我们做到这一点。

牛顿法

梯度下降是一阶优化方法。它只考虑损失函数的一阶导数,不考虑高阶函数。基本上这意味着它对损失函数的曲率一无所知。梯度下降可以告诉我们损失是否下降,下降得有多快,但无法区分曲线的的弯曲程度。

bc8b739bcf96800bf7e3d12e4744392a093377d3

上图三条曲线,红点处的梯度都是一样的,但曲率大不一样。解决方案?考虑二阶导数,或者说梯度改变得有多快。

使用二阶导数解决这一问题的一个非常流行的技术是牛顿法(Newton's Method)。为了避免偏离本文的主题,我不会过多探究牛顿法的数学。相反,我将尝试构建牛顿法的直觉。

牛顿法可以提供向梯度方向移动的理想步幅。由于我们现在具备了损失曲面的曲率信息,步幅可以据此确定,避免越过病态曲率的底部。

牛顿法通过计算Hessian矩阵做到这一点。Hessian矩阵是损失函数在所有权重组合上的二阶导数的矩阵。

9aceb43621980d7bfc1cbb45b3043c491a4c62b5

Hessian提供了损失曲面每一点上的曲率估计。正曲率意味着随着我们的移动,损失曲面变得不那么陡峭了。负曲率则意味着,损失曲面变得越来越陡峭了。

ff4246659133a7bd3ead940b3046a35b01d57ee8

注意,如果这一步的计算结果是负的,那就意味着我们可以切换回原本的算法。这对应于下面梯度变得越来越陡峭的情形。

1251dd7b0641f4a9f290d17688b7c8d938e2b73e

然而,如果梯度变得越来越不陡峭,那么我们也许正向病态曲率的底部移动。这时牛顿算法提供了一个修正过的学习步幅,和曲率成反比。换句话说,如果损失曲面变得不那么陡峭,学习步幅就下降。

为何我们不常使用牛顿法?

你已经看到公式中的Hessian矩阵了。Hessian矩阵需要我们计算损失函数在所有权重组合上的梯度。也就是说,需要做的计算的数量级是神经网络所有权重数量的平方。

现代神经网络架构的参数量可能是数亿,计算数亿的平方的梯度在算力上不可行。

虽然高阶优化方法在算力上不太可行,但二阶优化关于纳入梯度自身如何改变的想法是可以借鉴的。虽然我们无法准确计算这一信息,但我们可以基于之前梯度的信息使用启发式算法引导优化过程。

动量

搭配SGD使用的一个非常流行的技术是动量(Momentum)。动量法不仅使用当前的梯度,同时还利用之前的梯度提供的信息。

3a87a2db01ee9fad5baac9585d4958aa22aa81bb

上面的第一个等式就是动量,动量等式由两部分组成,第一项是上一次迭代的动量,乘以“动量系数”。

dd63e70d69cf27af49d408e1df2214d912d46fb3

比如,假设我们将初始动量v设为0,系数定为0.9,那么后续的更新等式为:


50b8e9e77c8b5127a35f9a06808d748ffa5677a4

我们看到,后续的更新保留了之前的梯度,但最近的梯度权重更高。(致喜欢数学的读者,这是梯度的指数平均。)

下面我们来看看动量法如何帮助我们缓解病态曲率的问题。下图中,大多数梯度更新发生在之字形方向上,我们将每次更新分解为w1和w2方向上的两个分量。如果我们分别累加这些梯度的两个分量,那么w1方向上的分量将互相抵消,而w2方向上的分量得到了加强。

4382c04cc8ad67e8773768d2d665cdc7d3e803a1

也就是说,基于动量法的更新,积累了w2方向上的分量,清空了w1方向上的分量,从而帮助我们更快地通往最小值。从这个意义上说,动量法也有助于抑制振荡。

动量法同时提供了加速度,从而加快收敛。但你可能想要搭配模拟退火,以免跳过最小值。

在实践中,动量系数一般初始化为0.5,并在多个epoch后逐渐退火至0.9.

RMSProp

RMSProp,也就是均方根传播的历史很有趣。它是传奇人物Geoffrey Hinton在Coursera授课时初次提出的。

RMSProp也试图抑制振荡,但采取的方法和动量不同。此外,RMSProp可以自动调整学习率。还有,RMSProp为每个参数选定不同的学习率。

992eb3fef860f3ad22d14f717b31a3f5801fb3b1

在第一个等式中,类似之前的动量法,我们计算了梯度平方的指数平均。由于我们为每个参数单独计算,这里的梯度gt表示正更新的参数上的梯度投影。

第二个等式根据指数平均决定步幅大小。我们选定一个初始学习率η,接着除以平均数。在我们上面举的例子中,w1的梯度指数平均比w2大得多,所以w1的学习步幅比w2小得多。这就帮助我们避免了脊间振荡,更快地向最小值移动。

第三个等式不过是权重更新步骤。

上面的等式中,超参数ρ一般定为0.9,但你可能需要加以调整。等式2中的ε是为了确保除数不为零,一般定为1e-10.

注意RMSProp隐式地应用了模拟退火。在向最小值移动的过程中,RMSProp会自动降低学习步幅,以免跳过最小值。

Adam

Adam,即Adaptive Moment Optimization算法结合了动量和RMSProp的启发式算法。

51a401a802f8771237a34c26bc43336b43d77085

这里,我们计算了梯度的指数平均和梯度平方的指数平均(等式1和等式2)。为了得出学习步幅,等式3在学习率上乘以梯度的平均(类似动量),除以梯度平方平均的均方根(类似RMSProp)。等式4是权重更新步骤。

超参数β1一般取0.9,β2一般取0.99. ε一般定为1e-10.

结语

本文介绍了三种应对病态曲率同时加速训练过程的梯度下降方法。

在这三种方法之中,也许动量法用得更普遍,尽管从论文上看Adam更吸引人。经验表明这三种算法都能收敛到给定损失曲面的不同的最优局部极小值。然而,动量法看起来要比Adam更容易找到比较平坦的最小值,而自适应方法(自动调整学习率)倾向于迅速地收敛于较尖的最小值。比较平坦的最小值概括性更好。

9c8fa9bbb112f8c783f9732fbb82447d4e33a84d

尽管这些方法有助于我们驯服深度网络难以控制的损失平面,随着网络日益变深,它们开始变得不够用了。除了选择更好的优化方法,有相当多的研究试图寻找能够生成更平滑的损失曲面的架构。批量归一化(Batch Normalization)和残差连接(Residual Connections)正是这方面的两个例子。我们会在后续的文章中详细介绍它们。但这篇文章就到此为止了。欢迎在评论中提问。

原文发布时间为:2018-10-07

本文作者: weakish

本文来自云栖社区合作伙伴“深度学习自然语言处理”,了解相关信息可以关注“深度学习自然语言处理"


相关文章
|
14天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
72 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
4天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
|
15天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
17天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
124 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
13天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
12天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
20天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
23天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
17天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
17天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。