python中的min和in用代码实现

简介: min在 Python 中 min 函数可以直接返回列表中的最小项。现在用代码演示一下,怎么用代码实现在列表中检索一个最小项。def fn(L): MinIndex = 0 CurrentInder = 1 while C...

min

在 Python 中 min 函数可以直接返回列表中的最小项。
现在用代码演示一下,怎么用代码实现在列表中检索一个最小项。

def fn(L):
    MinIndex = 0
    CurrentInder = 1
    while CurrentInder < len(L):
        if L[MinIndex] > L[CurrentInder]:
            MinIndex = CurrentInder
        CurrentInder += 1
    return L[MinIndex]

L = [21,45,2,3,5,2,57,6,4]

print(fn(L))

解释一下

先把列表的第一项,也就是索引为0的值置为最小项,然后跟第二项,也就是索引为1的值进行比较,设置while循环,退出条件是列表的每一项都比较完。这样遍历了整个列表,最小项的索引也就找到了。
那最大项的索引岂不是改个条件就获取了,没错。试一下吧。

in

在python 中 in 的运算符用于在列表中搜索一个特定的项,这个列表没有要求。那这个in方法用代码实现起来就比较简单了。


def fn(L,target):
    position = 0
    while position < len(L):
        if L[position] == target:
            return ('索引是:{},值是:{}'.format(position,L[position]))
        position +=1
    return -1


L = [21,45,1,3,5,2,57,6,4]

print(fn(L,4))

只要挨个比较目标值就完事了。假如目标值不在列表中返回 -1 好了

但要考虑一件事,顺序搜索列表的性能怎么样呢?

  • 在最好的情况下,目标值正好在列表的前面,算法只进行了一次迭代就找到了目标值,复杂度为O(1)。
  • 最坏的情况下,目标项在列表的最末尾或者不在列表里,我们要比较n次(假如列表长度为n),那么最坏情况下,顺序搜索的复杂度为O(n)。
  • 再来考虑一下平均情况下的算法复杂度。要确定平均情况下,把在每一个可能的位置找到目标项所需的迭代次数相加,总和除以n,这样一算,算法执行了(n+n-1+n-2+ ++1)/2 或者 (n+1)/ 2 次迭代。对于很大的n ,常数因子2的作用不大,因此,平均情况下的复杂度仍然为O(n).

得出结论,顺序搜索最好情况的性能很少见,而平均情况和最坏情况的性能则基本相同。
对于没有按照任何顺序排列的数据,顺序搜索是必要的,当列表有序的时候,可以使用二叉搜索,又称二分查找。

二分查找

假设列表中的项都是按照升序排列的,二分查找就是先找到中间一项跟目标项进行比较,如果相等就返回该项的位置,也就是索引。否则,如果目标项比列表中间项大,就在中间项以后的位置查找,如果目标项比列表中间项小,就在中间项以前的位置查找。

def fn(L,target):
    left = 0
    right = len(L) - 1

    while left <= right:
        mid = (left + right) // 2
        if target == L[mid]:
            return mid
        elif target > L[mid]:
            left = mid + 1
        else:
            right = mid - 1
    return -1


L = [1,2,3,4,5,6,7,8,9]

print(fn(L,9))

首先设置 while 循环的退出条件是:查找的目标项跟列表中的中间项相等。

为了实现这个退出条件,我们一分为二这个列表,看看目标项在列表前后的哪个部分,当第一遍循环之后我们缩小一半的查找区域,再次循环又缩小一半。直到匹配出目标项。

对于大小为 n 的列表,实际上执行了 n/2/2/2/2/ 的连续除法,直到结果为1,假设 k 是用 n 除以 2 的次数。要求解k,让 n/2^k=1 就行了,那么 n=2^k,k=㏒₂n ,因此二分查找的复杂度为 O(k=㏒₂n)。

结语

最近会放上一些算法的文章,来锻炼算法能力。毕竟最底层的东西才是最实用的。

目录
相关文章
|
19天前
|
开发框架 数据建模 中间件
Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器是那些静悄悄的幕后英雄。它们不张扬,却能默默地为函数或类增添强大的功能。本文将带你了解装饰器的魅力所在,从基础概念到实际应用,我们一步步揭开装饰器的神秘面纱。准备好了吗?让我们开始这段简洁而富有启发性的旅程吧!
26 6
|
1月前
|
存储 缓存 测试技术
Python中的装饰器:功能增强与代码复用的利器
在Python编程中,装饰器是一种强大而灵活的工具,它允许开发者以简洁优雅的方式增强函数或方法的功能。本文将深入探讨装饰器的定义、工作原理、应用场景以及如何自定义装饰器。通过实例演示,我们将展示装饰器如何在不修改原有代码的基础上添加新的行为,从而提高代码的可读性、可维护性和复用性。此外,我们还将讨论装饰器在实际应用中的一些最佳实践和潜在陷阱。
|
1月前
|
人工智能 数据挖掘 Python
Python编程基础:从零开始的代码旅程
【10月更文挑战第41天】在这篇文章中,我们将一起探索Python编程的世界。无论你是编程新手还是希望复习基础知识,本文都将是你的理想之选。我们将从最基础的语法讲起,逐步深入到更复杂的主题。文章将通过实例和练习,让你在实践中学习和理解Python编程。让我们一起开启这段代码之旅吧!
|
12天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
54 8
|
19天前
|
API Python
【Azure Developer】分享一段Python代码调用Graph API创建用户的示例
分享一段Python代码调用Graph API创建用户的示例
41 11
|
21天前
|
测试技术 Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界中,装饰器是那些能够为我们的代码增添魔力的小精灵。它们不仅让代码看起来更加优雅,还能在不改变原有函数定义的情况下,增加额外的功能。本文将通过生动的例子和易于理解的语言,带你领略装饰器的奥秘,从基础概念到实际应用,一起开启Python装饰器的奇妙旅程。
34 11
|
17天前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
17天前
|
程序员 测试技术 数据安全/隐私保护
深入理解Python装饰器:提升代码重用与可读性
本文旨在为中高级Python开发者提供一份关于装饰器的深度解析。通过探讨装饰器的基本原理、类型以及在实际项目中的应用案例,帮助读者更好地理解并运用这一强大的语言特性。不同于常规摘要,本文将以一个实际的软件开发场景引入,逐步揭示装饰器如何优化代码结构,提高开发效率和代码质量。
42 6
|
22天前
|
Python
如何提高Python代码的可读性?
如何提高Python代码的可读性?
34 4
|
22天前
|
Python
Python编程入门:从零开始的代码旅程
本文是一篇针对Python编程初学者的入门指南,将介绍Python的基本语法、数据类型、控制结构以及函数等概念。文章旨在帮助读者快速掌握Python编程的基础知识,并能够编写简单的Python程序。通过本文的学习,读者将能够理解Python代码的基本结构和逻辑,为进一步深入学习打下坚实的基础。