基于阿里云容器服务监控 Kubernetes集群GPU指标

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: ### 简介 当您在阿里云容器服务中使用GPU ECS主机构建Kubernetes集群进行AI训练时,经常需要知道每个Pod使用的GPU的使用情况,比如每块显存使用情况、GPU利用率,GPU卡温度等监控信息,本文介绍如何快速在阿里云上构建基于Prometheus + Grafana的GPU监控方案。

简介

当您在阿里云容器服务中使用GPU ECS主机构建Kubernetes集群进行AI训练时,经常需要知道每个Pod使用的GPU的使用情况,比如每块显存使用情况、GPU利用率,GPU卡温度等监控信息,本文介绍如何快速在阿里云上构建基于Prometheus + Grafana的GPU监控方案。

Prometheus

Prometheus 是一个开源的服务监控系统和时间序列数据库。从 2012 年开始编写代码,再到 2015 年 github 上开源以来,已经吸引了 20k+ 关注,2016 年 Prometheus 成为继 k8s 后,第二名 CNCF(Cloud Native Computing Foundation) 成员。2018年8月 于CNCF毕业。
作为新一代开源解决方案,很多理念与 Google SRE 运维之道不谋而合。

image.png | left | 516x309

操作

前提

您已经通过阿里云容器服务创建了拥有GPU ECS的Kubernetes集群,并部署prometheus监控,具体步骤请参考:

部署Prometheus 的GPU 采集器

apiVersion: apps/v1
kind: DaemonSet
metadata:
  namespace: monitoring
  name: ack-prometheus-gpu-exporter
spec:
  selector:
    matchLabels:
      k8s-app: ack-prometheus-gpu-exporter
  template:
    metadata:
      labels:
        k8s-app: ack-prometheus-gpu-exporter
    spec:
      affinity:
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
            - matchExpressions:
              - key: aliyun.accelerator/nvidia_name
                operator: Exists
      hostPID: true
      containers:
      - name: node-gpu-exporter
        image: registry.cn-hangzhou.aliyuncs.com/acs/gpu-prometheus-exporter:0.1-5cc5f27
        imagePullPolicy: Always
        ports:
        - name: http-metrics
          containerPort: 9445
        env:
          - name: MY_NODE_NAME
            valueFrom:
              fieldRef:
                apiVersion: v1
                fieldPath: spec.nodeName
        resources:
          requests:
            memory: 50Mi
            cpu: 200m
          limits:
            memory: 100Mi
            cpu: 300m
        volumeMounts:
        - mountPath: /var/run/docker.sock
          name: docker-sock
      volumes:
      - hostPath:
          path: /var/run/docker.sock
          type: File
        name: docker-sock
        
---
apiVersion: v1
kind: Service
metadata:
  name: node-gpu-exporter
  namespace: monitoring
  labels:
    k8s-app: ack-prometheus-gpu-exporter
spec:
  type: ClusterIP
  ports:
  - name: http-metrics
    port: 9445
    protocol: TCP
  selector:
    k8s-app: ack-prometheus-gpu-exporter

---
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: ack-prometheus-gpu-exporter
  labels:
    release: ack-prometheus-operator
    app: ack-prometheus-gpu-exporter
  namespace: monitoring
spec:
  selector:
    matchLabels:
      k8s-app: ack-prometheus-gpu-exporter
  namespaceSelector:
    matchNames:
    - monitoring
  endpoints:
  - port: http-metrics
    interval: 30s

配置Grafana

访问Grafana监控面板

执行以下命令,将集群中的Grafana映射到本地3000端口。

kubectl -n monitoring port-forward svc/ack-prometheus-operator-grafana 3000:80

在浏览器中访问localhost:3000,即可访问Grafana。 默认账号密码为 admin/admin
image

导入GPU监控配置
  1. 下载文件并解压,得到两个json文件
  2. 进入Grafana页面,点击Import dashboard:

image

  1. 第一步下载的json文件上传,选择数据源为Prometheus

image

导入完成后查看结果确认监控正常。

查看监控信息

节点GPU监控

image.png | left | 827x422

Pod GPU监控

image.png | left | 827x423

部署应用

如果您已经使用了Arena,可以直接使用arena提交一个训练任务。

arena submit tf --name=style-transfer              \
              --gpus=1              \
              --workers=1              \
              --workerImage=registry.cn-hangzhou.aliyuncs.com/tensorflow-samples/neural-style:gpu \
              --workingDir=/neural-style \
              --ps=1              \
              --psImage=registry.cn-hangzhou.aliyuncs.com/tensorflow-samples/style-transfer:ps   \
              "python neural_style.py --styles /neural-style/examples/1-style.jpg --iterations 1000000"

NAME:   style-transfer
LAST DEPLOYED: Thu Sep 20 14:34:55 2018
NAMESPACE: default
STATUS: DEPLOYED

RESOURCES:
==> v1alpha2/TFJob
NAME                  AGE
style-transfer-tfjob  0s

提交任务成功后在监控页面里可以看到Pod的GPU相关指标, 能够看到我们通过Arena部署的Pod,以及pod里GPU 的资源消耗

image.png | left | 827x422

节点维度也可以看到对应的GPU卡和节点的负载, 在GPU节点监控页面可以选择对应的节点和GPU卡

image.png | left | 827x421

相关实践学习
使用ACS算力快速搭建生成式会话应用
阿里云容器计算服务 ACS(Container Compute Service)以Kubernetes为使用界面,采用Serverless形态提供弹性的算力资源,使您轻松高效运行容器应用。本文将指导您如何通过ACS控制台及ACS集群证书在ACS集群中快速部署并公开一个容器化生成式AI会话应用,并监控应用的运行情况。
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
目录
相关文章
|
29天前
|
人工智能 算法 调度
阿里云ACK托管集群Pro版共享GPU调度操作指南
本文介绍在阿里云ACK托管集群Pro版中,如何通过共享GPU调度实现显存与算力的精细化分配,涵盖前提条件、使用限制、节点池配置及任务部署全流程,提升GPU资源利用率,适用于AI训练与推理场景。
194 1
|
1月前
|
弹性计算 监控 调度
ACK One 注册集群云端节点池升级:IDC 集群一键接入云端 GPU 算力,接入效率提升 80%
ACK One注册集群节点池实现“一键接入”,免去手动编写脚本与GPU驱动安装,支持自动扩缩容与多场景调度,大幅提升K8s集群管理效率。
217 89
|
6月前
|
资源调度 Kubernetes 调度
从单集群到多集群的快速无损转型:ACK One 多集群应用分发
本文介绍如何利用阿里云的分布式云容器平台ACK One的多集群应用分发功能,结合云效CD能力,快速将单集群CD系统升级为多集群CD系统。通过增加分发策略(PropagationPolicy)和差异化策略(OverridePolicy),并修改单集群kubeconfig为舰队kubeconfig,可实现无损改造。该方案具备多地域多集群智能资源调度、重调度及故障迁移等能力,帮助用户提升业务效率与可靠性。
|
2月前
|
存储 Kubernetes 网络安全
关于阿里云 Kubernetes 容器服务(ACK)添加镜像仓库的快速说明
本文介绍了在中国大陆地区因网络限制无法正常拉取 Docker 镜像的解决方案。作者所在的阿里云 Kubernetes 集群使用的是较旧版本的 containerd(1.2x),且无法直接通过 SSH 修改节点配置,因此采用了一种无需更改 Kubernetes 配置文件的方法。通过为 `docker.io` 添加 containerd 的镜像源,并使用脚本自动修改 containerd 配置文件中的路径错误(将错误的 `cert.d` 改为 `certs.d`),最终实现了通过多个镜像站点拉取镜像。作者还提供了一个可重复运行的脚本,用于动态配置镜像源。虽然该方案能缓解镜像拉取问题,
322 2
|
1月前
|
人工智能 城市大脑 运维
喜讯!阿里云国产异构GPU云平台技术荣获“2025算力中国·年度重大成果”
2025年8月23日,在工业和信息化部新闻宣传中心、中国信息通信研究院主办的2025中国算力大会上,阿里云与浙江大学联合研发的“国产异构GPU云平台关键技术与系统”荣获「算力中国·年度重大成果」。该评选旨在选拔出算力产业具有全局性突破价值的重大成果,是业内公认的技术创新“风向标”。
219 0
|
6月前
|
存储 机器学习/深度学习 数据库
阿里云服务器X86/ARM/GPU/裸金属/超算五大架构技术特点、场景适配参考
在云计算技术飞速发展的当下,云计算已经渗透到各个行业,成为企业数字化转型的关键驱动力。选择合适的云服务器架构对于提升业务效率、降低成本至关重要。阿里云提供了多样化的云服务器架构选择,包括X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器以及高性能计算等。本文将深入解析这些架构的特点、优势及适用场景,以供大家了解和选择参考。
1122 61
|
9月前
|
存储 机器学习/深度学习 人工智能
2025年阿里云GPU服务器租用价格、选型策略与应用场景详解
随着AI与高性能计算需求的增长,阿里云提供了多种GPU实例,如NVIDIA V100、A10、T4等,适配不同场景。2025年重点实例中,V100实例GN6v单月3830元起,适合大规模训练;A10实例GN7i单月3213.99元起,适用于混合负载。计费模式有按量付费和包年包月,后者成本更低。针对AI训练、图形渲染及轻量级推理等场景,推荐不同配置以优化成本和性能。阿里云还提供抢占式实例、ESSD云盘等资源优化策略,支持eRDMA网络加速和倚天ARM架构,助力企业在2025年实现智能计算的效率与成本最优平衡。 (该简介为原文内容的高度概括,符合要求的字符限制。)
|
7月前
|
存储 机器学习/深度学习 算法
阿里云X86/ARM/GPU/裸金属/超算等五大服务器架构技术特点、场景适配与选型策略
在我们选购阿里云服务器的时候,云服务器架构有X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器、高性能计算可选,有的用户并不清楚他们之间有何区别。本文将深入解析这些架构的特点、优势及适用场景,帮助用户更好地根据实际需求做出选择。
|
9月前
|
边缘计算 调度 对象存储
部署DeepSeek但IDC GPU不足,阿里云ACK Edge虚拟节点来帮忙
介绍如何使用ACK Edge与虚拟节点满足DeepSeek部署的弹性需求。

相关产品

  • 容器计算服务
  • 容器服务Kubernetes版
  • 推荐镜像

    更多