Gradient Descend 梯度下降法公式推导

简介: 通过求偏导的方式,求解多元函数,比较困难,可以用近似求解的方式,求解最大/最小值。即用迭代法求解x_{k+1}与前一个变量 x_k关系。

1

相关文章
|
5月前
|
算法
梯度下降算法(二)
梯度下降法中,学习率选择至关重要。0.3的学习率导致无法找到最小值且产生震荡,而0.01则使结果接近最优解(2.99998768)。当学习率进一步减小至0.001,点远离最低点。通过迭代次数增加至1000次,可更接近最低点(2.999999999256501)。梯度下降用于最小化损失,学习率控制参数更新步长,需平衡收敛速度和稳定性。迭代次数和初始点也影响模型性能,合适的初始化能加速收敛并避开局部极小值。
|
5月前
|
机器学习/深度学习 存储 算法
梯度下降算法(一)
梯度下降是一种迭代优化算法,用于找到多变量函数的最小值。它不直接求解方程,而是从随机初始点开始,沿着梯度(函数增大幅度最大方向)的反方向逐步调整参数,逐步逼近函数的最小值。在单变量函数中,梯度是导数,而在多变量函数中,梯度是一个包含所有变量偏导数的向量。通过计算梯度并乘以学习率,算法更新参数以接近最小值。代码示例展示了如何用Python实现梯度下降,通过不断迭代直到梯度足够小或达到预设的最大迭代次数。该过程可以类比为在雾中下山,通过感知坡度变化来调整前进方向。
|
6月前
|
机器学习/深度学习 算法 调度
多元线性回归梯度下降法
梯度下降法是一种通用的优化算法,尤其适用于机器学习中找到最优解。与解析解法不同,它不局限于特定情况,能在数据规模较大时依然有效。该方法通过迭代逐步接近最优解,每次迭代利用损失函数的梯度信息调整参数。学习率是控制参数更新幅度的关键因素,太大会导致发散,太小则收敛慢。全量梯度下降每次使用所有样本更新,收敛稳定但速度慢;随机梯度下降每次仅用一个样本,速度快但可能产生较大波动;小批量梯度下降取两者之间,以一定的样本批量进行更新,兼顾速度和稳定性。
76 1
|
6月前
|
算法 Python
梯度下降法
梯度下降法
69 0
|
机器学习/深度学习 并行计算 算法
梯度下降(Gradient Descent)
梯度下降(Gradient Descent)是一种常用的优化算法,用于最小化(或最大化)函数的目标值。它是一种迭代的优化方法,通过沿着目标函数的负梯度方向更新参数,逐步接近最优解。
139 1
|
机器学习/深度学习 移动开发
梯度下降法 Gradient Descent
梯度下降法 Gradient Descent
|
机器学习/深度学习 算法
机器学习算法之——梯度提升(Gradient Boosting)下
GDBT本身并不复杂,不过要吃透的话需要对集成学习的原理、策树原理和各种损失函树有一定的了解。由于GBDT的卓越性能,只要是研究机器学习都应该掌握这个算法,包括背后的原理和应用调参方法。目前GBDT的算法比较好的库是xgboost。当然scikit-learn也可以。
机器学习算法之——梯度提升(Gradient Boosting)下
|
机器学习/深度学习 算法 Python
机器学习算法之——梯度提升(Gradient Boosting)上
由于每个子模型要使用全部的数据集进行训练,因此 Ada Boosting 算法中没有 oob 数据集,在使用 Ada Boosting 算法前,需要划分数据集:train_test_split;
机器学习算法之——梯度提升(Gradient Boosting)上
|
机器学习/深度学习 算法
梯度下降算法原理 神经网络(Gradient Descent)
梯度下降算法原理 神经网络(Gradient Descent)
203 0
梯度下降算法原理 神经网络(Gradient Descent)
|
机器学习/深度学习 存储 算法
导数、梯度、最优化方法|学习笔记
快速学习导数、梯度、最优化方法
导数、梯度、最优化方法|学习笔记
下一篇
无影云桌面