基于深度学习的自然场景文字检测及端到端的OCR中文文字识别

本文涉及的产品
视觉智能开放平台,图像通用资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频通用资源包5000点
简介:

实现功能

 ●  文字方向检测 0、90、180、270度检测
 ●  文字检测 后期将切换到keras版本文本检测 实现keras端到端的文本检测及识别
 ●  不定长OCR识别

环境部署

Bash
##GPU环境
sh setup.sh
##CPU环境
sh setup-cpu.sh
##CPU python3环境
sh setup-python3.sh
使用环境:python3.6+tensorflow1.7+cpu/gpu
AI 代码解读

模型训练

 ●  一共分为3个网络
 ●  1. 文本方向检测网络-Classify(vgg16)
 ●  2. 文本区域检测网络-CTPN(CNN+RNN)
 ●  3. EndToEnd文本识别网络-CRNN(CNN+GRU/LSTM+CTC)

文字方向检测-vgg分类

基于图像分类,在VGG16模型的基础上,训练0、90、180、270度检测的分类模型.
详细代码参考angle/predict.py文件,训练图片8000张,准确率88.23%

模型地址

文字区域检测CTPN

支持CPU、GPU环境,一键部署

文本检测训练参考

https://github.com/eragonruan/text-detection-ctpn

OCR 端到端识别:CRNN

ocr识别采用GRU+CTC端到到识别技术,实现不分隔识别不定长文字

提供keras 与pytorch版本的训练代码,在理解keras的基础上,可以切换到pytorch版本,此版本更稳定

如果你只是测试一下

运行demo.py  写入测试图片的路径即可,
如果想要显示ctpn的结果,
修改文件./ctpn/ctpn/other.py
的draw_boxes函数的最后部分,
cv2.inwrite('dest_path',img),如此,
可以得到ctpn检测的文字区域框以及图像的ocr识别结果
AI 代码解读

如果你想训练这个网络

1 对ctpn进行训练

 ●  定位到路径--./ctpn/ctpn/train_net.py
 ●  预训练的vgg网络路径VGG_imagenet.npy将预训练权重下载下来,pretrained_model指向该路径即可, 此外整个模型的预训练权重checkpoint
 ●  ctpn数据集还是百度云数据集下载完成并解压后,将.ctpn/lib/datasets/pascal_voc.py 文件中的pascal_voc 类中的参数self.devkit_path指向数据集的路径即可

2 对crnn进行训练

 ●  keras版本 ./train/keras_train/train_batch.py  model_path--指向预训练权重位置 MODEL_PATH---指向模型训练保存的位置keras模型预训练权重
 ●  pythorch版本./train/pytorch-train/crnn_main.py

parser.add_argument(
    '--crnn',
    help="path to crnn (to continue training)",
    default=预训练权重的路径,看你下载的预训练权重在哪啦)
parser.add_argument(
    '--experiment',
    help='Where to store samples and models',
    default=模型训练的权重保存位置,这个自己指定)
AI 代码解读

识别结果展示

文字检测及OCR识别结果

e38fbca179f9a4fbd0b796412744f5ea2ebe2b92

主要是因为训练的时候,只包含中文和英文字母,因此很多公式结构是识别不出来的

看看纯文字的

f999b15558e50f9d420ee8c3bceedb2c8bfce6ce

可以看到,对于纯文字的识别结果还是阔以的呢,感觉可以在crnn网络在加以改进,现在的crnn中的cnn有点浅,并且rnn层为单层双向+attention,目前正在针对这个地方进行改动,使用迁移学习,以restnet为特征提取层,使用多层双向动态rnn+attention+ctc的机制,将模型加深,目前正在进行模型搭建,结果好的话就发上来。


原文发布时间为:2018-09-29

本文来自云栖社区合作伙伴“大数据挖掘DT机器学习”,了解相关信息可以关注“大数据挖掘DT机器学习”。

目录
打赏
0
72
72
0
73593
分享
相关文章
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现裂缝的检测识别(C#代码UI界面版)
本项目基于YOLOv8模型与C#界面,结合Baumer工业相机,实现裂缝的高效检测识别。支持图像、视频及摄像头输入,具备高精度与实时性,适用于桥梁、路面、隧道等多种工业场景。
87 0
基于深度学习YOLO框架的城市道路损伤检测与评估项目系统【附完整源码+数据集】
本项目基于深度学习的YOLO框架,成功实现了城市道路损伤的自动检测与评估。通过YOLOv8模型,我们能够高效地识别和分类路面裂缝、井盖移位、坑洼路面等常见的道路损伤类型。系统的核心优势在于其高效性和实时性,能够实时监控城市道路,自动标注损伤类型,并生成损伤评估报告。
45 0
基于深度学习YOLO框架的城市道路损伤检测与评估项目系统【附完整源码+数据集】
传统OCR与深度学习OCR的较量
OCR(光学字符识别)技术经历了从传统手工特征提取到深度学习自动化处理的变革。本文对比传统OCR与深度学习OCR,从图像预处理到后处理,详解技术演进带来的速度、精度与扩展性飞跃。
54 0
中药材图像识别数据集(100类,9200张)|适用于YOLO系列深度学习分类检测任务
本数据集包含9200张中药材图像,覆盖100类常见中药材,适用于YOLO系列及主流深度学习模型的图像分类与目标检测任务。数据已划分为训练集(8000张)与验证集(1200张),采用标准文件夹结构和简体中文命名,适配PyTorch、TensorFlow等框架,可用于中药识别系统开发、医学辅助诊断、移动端图像识别App研发及AI科研训练,具备较强的实用性与拓展性。
180 1
深度学习与图像处理 | 基于传统图像处理的自动驾驶车道线检测
本节介绍了基于OpenCV的传统图像处理算法在车道线检测中的应用,重点讲解了如何通过HSV颜色空间提取黄色和白色车道线、使用高斯模糊降噪、Canny算子提取边缘、感兴趣区域裁剪以及霍夫变换检测线段。最终通过对检测到的线段进行聚类与平均,得到代表左右车道线的直线,并实现车道线的可视化显示。该方法为自动驾驶小车提供了转向控制依据。
118 2
熊猫 OCR 识别软件下载,支持截图 OCR、PDF 识别、多语言翻译的免费全能工具,熊猫OCR识别
本文介绍了几款实用的图文识别软件,包括熊猫OCR、Umi-OCR和天若OCR_本地版。熊猫OCR功能强大,支持多窗口操作、AI找图找色、OCR识别等;Umi-OCR免费且高效,具备截图OCR、批量处理等功能;天若OCR界面简洁,适合快速文字识别。文章还提供了下载链接及软件特点、界面展示等内容,便于用户根据需求选择合适的工具。
182 36
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
276 22
OCR技术:解锁文字识别的无限可能
OCR(光学字符识别)技术是数字化浪潮中的关键工具,可将纸质文档、手写笔记或复杂背景下的文字图像转化为可编辑文本。本文从图像采集、预处理、字符识别到文本校正,全面解析OCR技术的原理,并探讨其在智能办公、智慧交通、便捷生活等领域的广泛应用。未来,OCR将与自然语言处理、计算机视觉等技术深度融合,推动智能化和综合化发展。通过开放生态系统和政策支持,开发者可探索更多创新场景,如古籍数字化、盲人阅读等,为社会带来更多价值。
333 57
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
538 6
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
87 8

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问