Linux IO多路复用之epoll网络编程(含源码)

简介: 前言本章节是用基本的Linux基本函数加上epoll调用编写一个完整的服务器和客户端例子,可在Linux上运行,客户端和服务端的功能如下:客户端从标准输入读入一行,发送到服务端服务端从网络读取一行,然后输出到客户端客户端收到服务端的响应,输出这一行到标准输出 服务端代码如下:#i...

前言

本章节是用基本的Linux基本函数加上epoll调用编写一个完整的服务器和客户端例子,可在Linux上运行,客户端和服务端的功能如下:

客户端从标准输入读入一行,发送到服务端

服务端从网络读取一行,然后输出到客户端

客户端收到服务端的响应,输出这一行到标准输出

 

服务端

代码如下:

复制代码
#include  <unistd.h>
#include <sys/types.h> /* basic system data types */
#include <sys/socket.h> /* basic socket definitions */
#include <netinet/in.h> /* sockaddr_in{} and other Internet defns */
#include <arpa/inet.h> /* inet(3) functions */
#include <sys/epoll.h> /* epoll function */
#include <fcntl.h> /* nonblocking */
#include <sys/resource.h> /*setrlimit */

#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>



#define MAXEPOLLSIZE 10000
#define MAXLINE 10240
int handle(int connfd);
int setnonblocking(int sockfd)
{
if (fcntl(sockfd, F_SETFL, fcntl(sockfd, F_GETFD, 0)|O_NONBLOCK) == -1) {
return -1;
}
return 0;
}

int main(int argc, char **argv)
{
int servPort = 6888;
int listenq = 1024;

int listenfd, connfd, kdpfd, nfds, n, nread, curfds,acceptCount = 0;
struct sockaddr_in servaddr, cliaddr;
socklen_t socklen = sizeof(struct sockaddr_in);
struct epoll_event ev;
struct epoll_event events[MAXEPOLLSIZE];
struct rlimit rt;
char buf[MAXLINE];

/* 设置每个进程允许打开的最大文件数 */
rt.rlim_max = rt.rlim_cur = MAXEPOLLSIZE;
if (setrlimit(RLIMIT_NOFILE, &rt) == -1)
{
perror("setrlimit error");
return -1;
}


bzero(&servaddr, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = htonl (INADDR_ANY);
servaddr.sin_port = htons (servPort);

listenfd = socket(AF_INET, SOCK_STREAM, 0);
if (listenfd == -1) {
perror("can't create socket file");
return -1;
}

int opt = 1;
setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));

if (setnonblocking(listenfd) < 0) {
perror("setnonblock error");
}

if (bind(listenfd, (struct sockaddr *) &servaddr, sizeof(struct sockaddr)) == -1)
{
perror("bind error");
return -1;
}
if (listen(listenfd, listenq) == -1)
{
perror("listen error");
return -1;
}
/* 创建 epoll 句柄,把监听 socket 加入到 epoll 集合里 */
kdpfd = epoll_create(MAXEPOLLSIZE);
ev.events = EPOLLIN | EPOLLET;
ev.data.fd = listenfd;
if (epoll_ctl(kdpfd, EPOLL_CTL_ADD, listenfd, &ev) < 0)
{
fprintf(stderr, "epoll set insertion error: fd=%d\n", listenfd);
return -1;
}
curfds = 1;

printf("epollserver startup,port %d, max connection is %d, backlog is %d\n", servPort, MAXEPOLLSIZE, listenq);

for (;;) {
/* 等待有事件发生 */
nfds = epoll_wait(kdpfd, events, curfds, -1);
if (nfds == -1)
{
perror("epoll_wait");
continue;
}
/* 处理所有事件 */
for (n = 0; n < nfds; ++n)
{
if (events[n].data.fd == listenfd)
{
connfd = accept(listenfd, (struct sockaddr *)&cliaddr,&socklen);
if (connfd < 0)
{
perror("accept error");
continue;
}

sprintf(buf, "accept form %s:%d\n", inet_ntoa(cliaddr.sin_addr), cliaddr.sin_port);
printf("%d:%s", ++acceptCount, buf);

if (curfds >= MAXEPOLLSIZE) {
fprintf(stderr, "too many connection, more than %d\n", MAXEPOLLSIZE);
close(connfd);
continue;
}
if (setnonblocking(connfd) < 0) {
perror("setnonblocking error");
}
ev.events = EPOLLIN | EPOLLET;
ev.data.fd = connfd;
if (epoll_ctl(kdpfd, EPOLL_CTL_ADD, connfd, &ev) < 0)
{
fprintf(stderr, "add socket '%d' to epoll failed: %s\n", connfd, strerror(errno));
return -1;
}
curfds++;
continue;
}
// 处理客户端请求
if (handle(events[n].data.fd) < 0) {
epoll_ctl(kdpfd, EPOLL_CTL_DEL, events[n].data.fd,&ev);
curfds--;


}
}
}
close(listenfd);
return 0;
}
int handle(int connfd) {
int nread;
char buf[MAXLINE];
nread = read(connfd, buf, MAXLINE);//读取客户端socket流

if (nread == 0) {
printf("client close the connection\n");
close(connfd);
return -1;
}
if (nread < 0) {
perror("read error");
close(connfd);
return -1;
}
write(connfd, buf, nread);//响应客户端
return 0;
}
复制代码

下载和编译

下载地址

编译和启动服务端

gcc epollserver.c -o epollserver
./epollserver

至于客户端可以参考本文的Linux/Unix服务端和客户端Socket编程入门实例的echoclient例子下载编译。

目录
相关文章
|
网络协议 安全 Linux
Linux C/C++之IO多路复用(select)
这篇文章主要介绍了TCP的三次握手和四次挥手过程,TCP与UDP的区别,以及如何使用select函数实现IO多路复用,包括服务器监听多个客户端连接和简单聊天室场景的应用示例。
349 0
|
存储 Linux C语言
Linux C/C++之IO多路复用(aio)
这篇文章介绍了Linux中IO多路复用技术epoll和异步IO技术aio的区别、执行过程、编程模型以及具体的编程实现方式。
646 1
Linux C/C++之IO多路复用(aio)
|
6月前
|
Linux C语言 网络架构
Linux的基础IO内容补充-FILE
而当我们将运行结果重定向到log.txt文件时,数据的刷新策略就变为了全缓冲,此时我们使用printf和fwrite函数打印的数据都打印到了C语言自带的缓冲区当中,之后当我们使用fork函数创建子进程时,由于进程间具有独立性,而之后当父进程或是子进程对要刷新缓冲区内容时,本质就是对父子进程共享的数据进行了修改,此时就需要对数据进行写时拷贝,至此缓冲区当中的数据就变成了两份,一份父进程的,一份子进程的,所以重定向到log.txt文件当中printf和fwrite函数打印的数据就有两份。此时我们就可以知道,
109 0
|
6月前
|
存储 Linux Shell
Linux的基础IO
那么,这里我们温习一下操作系统的概念我们在Linux平台下运行C代码时,C库函数就是对Linux系统调用接口进行的封装,在Windows平台下运行C代码时,C库函数就是对Windows系统调用接口进行的封装,这样做使得语言有了跨平台性,也方便进行二次开发。这就是因为在根本上操作系统确实像银行一样,并不完全信任用户程序,因为直接开放底层资源(如内存、磁盘、硬件访问权限)给用户程序会带来巨大的风险。所以就向银行一样他的服务是由工作人员隔着一层玻璃,然后对顾客进行服务的。
94 0
|
10月前
|
存储 网络协议 Linux
【Linux】进程IO|系统调用|open|write|文件描述符fd|封装|理解一切皆文件
本文详细介绍了Linux中的进程IO与系统调用,包括 `open`、`write`、`read`和 `close`函数及其用法,解释了文件描述符(fd)的概念,并深入探讨了Linux中的“一切皆文件”思想。这种设计极大地简化了系统编程,使得处理不同类型的IO设备变得更加一致和简单。通过本文的学习,您应该能够更好地理解和应用Linux中的进程IO操作,提高系统编程的效率和能力。
444 34
|
缓存 安全 Linux
Linux 五种IO模型
Linux 五种IO模型
|
12月前
|
Linux API C语言
Linux基础IO
Linux基础IO操作是系统管理和开发的基本技能。通过掌握文件描述符、重定向与管道、性能分析工具、文件系统操作以及网络IO命令等内容,可以更高效地进行系统操作和脚本编写。希望本文提供的知识和示例能帮助读者更深入地理解和运用Linux IO操作。
245 14
|
Linux C++
Linux C/C++之IO多路复用(poll,epoll)
这篇文章详细介绍了Linux下C/C++编程中IO多路复用的两种机制:poll和epoll,包括它们的比较、编程模型、函数原型以及如何使用这些机制实现服务器端和客户端之间的多个连接。
469 0
Linux C/C++之IO多路复用(poll,epoll)
Linux源码阅读笔记13-进程通信组件中
Linux源码阅读笔记13-进程通信组件中