图像识别试验 - 字符验证码、车牌号、身份证号

本文涉及的产品
视觉智能开放平台,视频通用资源包5000点
视觉智能开放平台,图像通用资源包5000点
视觉智能开放平台,分割抠图1万点
简介:

© 野比 2012

欢迎大家和我讨论相关问题。

代码在此(注意此版并非最终版)

光学字符识别(OCR)是非常有用的技术。在验证码识别、车牌号识别、文字识别方面,基于字符的识别技术算是比较容易上手的了(相比图文识别)。

闲来看到有朋友研究验证码识别,一时手痒,野比自己动手来做做验证码识别。当然,肯定只是简单的验证码。

名为验证码,实际上并不限于,还可以识别车牌号、身份证号、门牌号等各种乱七八糟的内容。

识别的流程很明确:

1、预处理图像

2、做y轴的投影

3、分析直方图分区

4、根据分区拆分图像为多个字符(很关键,拆得越好,后续识别率越高)

5、丢弃空白或无效字符

6、自动旋转字符(如果有倾斜),识别字符

如果样本中个图像有粘连,则可能造成分区不准确。这种情况下,需要进行旋转,但是怎样自动旋转,是个难题。

目前已可拆分出字符,下一步准备研究如何识别。(如果单个字符比较规范,可以利用现成的OCR控件)

这里有一些例子。

普通的验证码(毫无难度)

带干扰的验证码

较高强度干扰(目前使用的分区算法不能解决,需要更好的算法,比如动态阈值)

CSDN的验证码(毫无压力)

身份证号码

车牌号

补充个QQ验证码,用单一阈值方法,识别很困难,需要结合字符宽度进行判断

这是单一阈值分区的结果(没有限制宽度),可以看到效果很差。

继续研究如何优化分区算法,如何识别单个文字(可以考虑多重识别+样本训练)。

 

附上太平洋网站验证码。

有些粘连,但是可以通过固定字符宽度解决(宽度基本一致)

参考这张图(获得整个宽度,然后除以字符数得到每个宽度,分别提取)

二值化我用的Otsu算法,参考文献:"A threshold selection method from gray-level histograms", IEEE Trans. Systems, Man and Cybernetics 9(1), pp. 62–66, 1979

关于验证码,这篇论文很不错,建议参考:"Text-based CAPTCHA Strengths and Weaknesses", ACM Computer and Communication security 2011 (CSS'2011)

© 野比 2012

改进的去污算法

 

污损车牌号拆分字符

 

Ref:

二值化我用的Otsu算法,参考文献:"A threshold selection method from gray-level histograms", IEEE Trans. Systems, Man and Cybernetics 9(1), pp. 62–66, 1979

关于验证码,这篇论文很不错,建议参考:"Text-based CAPTCHA Strengths and Weaknesses", ACM Computer and Communication security 2011 (CSS'2011)

目录
打赏
0
0
0
0
8
分享
相关文章
ARMS 用户体验监控正式发布原生鸿蒙应用 SDK
阿里云 ARMS 用户体验监控(RUM)推出了针对原生鸿蒙应用的 SDK。SDK 使用 ArkTS 语言开发,支持页面采集、资源加载采集、异常采集及自定义采集等功能,能够全面监控鸿蒙应用的表现。集成简单,只需几步即可将 SDK 接入项目中,为鸿蒙应用的开发者提供了强有力的支持。
355 79
ToddlerBot:告别百万经费!6000刀就能造人形机器人,斯坦福开源全套方案普及机器人研究
ToddlerBot 是斯坦福大学推出的低成本开源人形机器人平台,支持强化学习、模仿学习和零样本模拟到现实转移,适用于运动操作研究和多场景应用。
383 3
ToddlerBot:告别百万经费!6000刀就能造人形机器人,斯坦福开源全套方案普及机器人研究
AppFlow:支持飞书机器人调用百炼应用
本文介绍了如何创建并配置飞书应用及机器人,包括登录飞书开发者后台创建应用、添加应用能力和API权限,以及通过AppFlow连接流集成阿里云百炼服务,最后详细说明了如何将机器人添加到飞书群组中实现互动。
821 5
一个linux脚本实现flask服务掉线自动重启
一个linux脚本实现flask服务掉线自动重启
301 0
Java使用OpenCV进行图像操作
OpenCV是一个开源的计算机视觉库,它提供了一系列丰富的图像处理和计算机视觉算法,包括图像读取、显示、滤波、特征检测、目标跟踪等功能。
5687 3
基于PP-OCRv3的车牌检测和识别
本项目基于百度飞桨[AI Studio平台](https://aistudio.baidu.com/aistudio/projectoverview/public/1)进行实现,百度出品的深度学习平台飞桨(PaddlePaddle)是主流深度学习框架中一款完全国产化的产品,与Google TensorFlow、Facebook Pytorch齐名。2016 年飞桨正式开源,是国内首个全面开源开放、技术领先、功能完备的产业级深度学习平台。相比国内其他平台,飞桨是一个功能完整的深度学习平台,也是唯一成熟稳定、具备大规模推广条件的深度学习平台。
546 0
计算机视觉-图像处理入门(一):linux(ubuntu)配置Openface+测试
计算机视觉-图像处理入门(一):linux(ubuntu)配置Openface+测试
770 0
计算机视觉-图像处理入门(一):linux(ubuntu)配置Openface+测试

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问