redis集群(一)数据分布理论

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 1.数据分布理论顺序分区和哈希分区(数据分区是分布式存储的核心) 哈希分布:(1)节点取余分区  (2)一致性哈希分区(3)虚拟槽分区(redis cluster采用的方式)(1)节点取余分区:键的...

1.数据分布理论

顺序分区和哈希分区(数据分区是分布式存储的核心)

 哈希分布:

(1)节点取余分区  (2)一致性哈希分区(3)虚拟槽分区(redis cluster采用的方式)

(1)节点取余分区:键的hash值对节点数取余

出现的问题:增加节点时数据偏移,导致数据的前移达到80%

如何避免出现的问题:翻倍扩容可以使数据迁移从80%降到50%

 

(2)一致性哈希:解决了上述取余分区的问题、为系统中每个节点分配一个token,范围一般在0~2的32次方,这些token构成哈希环。数据读写执行节点查找操作时,先根据key计算hash值,然后顺时针找到第一个大于等于该哈希值的token节点。例如,按照顺时针的原则,当key的hash出现在n1和n2之间,则该key就对属于n2;

 

 一致性哈希扩容:当添加节点时,只会影响相邻的节点;(适用于节点较多的情况)

出现的问题:①加减节点会造成哈希环中部分数据无法命中,需要手动处理或者忽略这些数据,常用于缓存场景。因为加入node5之后,原来缓存在node2的部分数据,只能在node5中获取,但是node5没有!

②当使用少量节点时,节点变化将大范围影响哈希环中数据映射,因此不适合少量数据节点的分布式方案。

③普通的一致性哈希分区在增减节点时需要增加一倍或者减少一半,才可以保证数据和负载均衡!

 (3)虚拟槽分区

 虚拟分槽使用良好的哈希函数把所有数据映射到一个固定范围的整数集合中,整数定义为槽(slot)。

这个范围远远大于节点数,比如redisCluster槽的范围是0~16383;

每一个节点负责维护一部分槽以及所映射的键值数据。

 虚拟槽分区的特点:

(1)解耦数据和节点之间的关系,简化了节点扩容和收缩的难度。

(2)节点自身维护槽的映射关系,不需要客户端或者代理服务维护槽分区元数据

(3)支持节点,槽,键之间的映射关系,用于数据路由、在线伸缩等场景。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
2月前
|
存储 缓存 NoSQL
数据的存储--Redis缓存存储(一)
数据的存储--Redis缓存存储(一)
100 1
|
1月前
|
NoSQL Redis
Redis的数据淘汰策略有哪些 ?
Redis 提供了 8 种数据淘汰策略,分为淘汰易失数据和淘汰全库数据两大类。易失数据淘汰策略包括:volatile-lru、volatile-lfu、volatile-ttl 和 volatile-random;全库数据淘汰策略包括:allkeys-lru、allkeys-lfu 和 allkeys-random。此外,还有 no-eviction 策略,禁止驱逐数据,当内存不足时新写入操作会报错。
71 16
|
2月前
|
监控 NoSQL Java
场景题:百万数据插入Redis有哪些实现方案?
场景题:百万数据插入Redis有哪些实现方案?
45 1
场景题:百万数据插入Redis有哪些实现方案?
|
2月前
|
存储 缓存 NoSQL
数据的存储--Redis缓存存储(二)
数据的存储--Redis缓存存储(二)
52 2
数据的存储--Redis缓存存储(二)
|
16天前
|
存储 NoSQL Redis
redis主从集群与分片集群的区别
主从集群通过主节点处理写操作并向从节点广播读操作,从节点处理读操作并复制主节点数据,优点在于提高读取性能、数据冗余及故障转移。分片集群则将数据分散存储于多节点,根据规则路由请求,优势在于横向扩展能力强,提升读写性能与存储容量,增强系统可用性和容错性。主从适用于简单场景,分片适合大规模高性能需求。
27 5
|
1月前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
在项目中,为了解决Redis与Mysql的数据一致性问题,我们采用了多种策略:对于低一致性要求的数据,不做特别处理;时效性数据通过设置缓存过期时间来减少不一致风险;高一致性但时效性要求不高的数据,利用MQ异步同步确保最终一致性;而对一致性和时效性都有高要求的数据,则采用分布式事务(如Seata TCC模式)来保障。
64 14
|
29天前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
39 5
|
1月前
|
存储 NoSQL 算法
Redis分片集群中数据是怎么存储和读取的 ?
Redis集群采用哈希槽分区算法,共有16384个哈希槽,每个槽分配到不同的Redis节点上。数据操作时,通过CRC16算法对key计算并取模,确定其所属的槽和对应的节点,从而实现高效的数据存取。
49 13
|
1月前
|
存储 NoSQL Redis
Redis的数据过期策略有哪些 ?
Redis 采用两种过期键删除策略:惰性删除和定期删除。惰性删除在读取键时检查是否过期并删除,对 CPU 友好但可能积压大量过期键。定期删除则定时抽样检查并删除过期键,对内存更友好。默认每秒扫描 10 次,每次检查 20 个键,若超过 25% 过期则继续检查,单次最大执行时间 25ms。两者结合使用以平衡性能和资源占用。
47 11
|
1月前
|
监控 NoSQL 测试技术
【赵渝强老师】Redis的AOF数据持久化
Redis 是内存数据库,提供数据持久化功能,支持 RDB 和 AOF 两种方式。AOF 以日志形式记录每个写操作,支持定期重写以压缩文件。默认情况下,AOF 功能关闭,需在 `redis.conf` 中启用。通过 `info` 命令可监控 AOF 状态。AOF 重写功能可有效控制文件大小,避免性能下降。