Python爬取微信公众号文章和评论 (基于Fiddler抓包分析)

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 背景说明  感觉微信公众号算得是比较难爬的平台之一,不过一番折腾之后还是小有收获的。没有用Scrapy(估计爬太快也有反爬限制),但后面会开始整理写一些实战出来。

背景说明

  感觉微信公众号算得是比较难爬的平台之一,不过一番折腾之后还是小有收获的。没有用Scrapy(估计爬太快也有反爬限制),但后面会开始整理写一些实战出来。简单介绍下本次的开发环境:

  • python3
  • requests
  • psycopg2 (操作postgres数据库)

抓包分析

  前一篇文章介绍过抓包前要做的准备,这里不再做相关说明。本次实战对抓取的公众号没有限制,但不同公众号每次抓取之前都要进行分析。打开Fiddler,将手机配置好相关代理,为避免干扰过多,这里给Fiddler加个过滤规则,只需要指定微信域名mp.weixin.qq.com就好:

Fiddler配置Filter规则
Fiddler配置Filter规则

  平时关注的公众号也比较多,本次实战以“36氪”公众号为例,继续往下看:

36氪公众号
“36氪”公众号
公众号右上角 -> 全部消息
公众号右上角 -> 全部消息

  在公众号主页,右上角有三个实心圆点,点击进入消息界面,下滑找到并点击“全部消息”,往下请求加载几次历史文章,然后回到Fiddler界面,不出意外的话应该可以看到这几次请求,可以看到返回的数据是json格式的,同时文章数据是以json字符串的形式定义在general_msg_list字段中:

公众号文章列表抓包请求
公众号文章列表抓包请求

分析文章列表接口

  把请求URL和Cookie贴上来进行分析:

https://mp.weixin.qq.com/mp/profile_ext?action=getmsg&__biz=MzI2NDk5NzA0Mw==&f=json&offset=10&count=10&is_ok=1&scene=126&uin=777&key=777&pass_ticket=QhOypNwH5dAr5w6UgMjyBrTSOdMEUT86vWc73GANoziWFl8xJd1hIMbMZ82KgCpN&wxtoken=&appmsg_token=971_LwY7Z%252BFBoaEv5z8k_dFWfJkdySbNkMR4OmFxNw~~&x5=1&f=json
Cookie: pgv_pvid=2027337976; pgv_info=ssid=s3015512850; rewardsn=; wxtokenkey=777; wxuin=2089823341; devicetype=android-26; version=26070237; lang=zh_CN;pass_ticket=NDndxxaZ7p6Z9PYulWpLqMbI0i3ULFeCPIHBFu1sf5pX2IhkGfyxZ6b9JieSYRUy;wap_sid2=CO3YwOQHEogBQnN4VTNhNmxQWmc3UHI2U3kteWhUeVExZHFVMnN0QXlsbzVJRUJKc1pkdVFUU2Y5UzhSVEtOZmt1VVlYTkR4SEllQ2huejlTTThJWndMQzZfYUw2SldLVGVMQUthUjc3QWdVMUdoaGN0Nml2SU05cXR1dTN2RkhRUVd1V2Y3SFJ5d01BQUF+fjCB1pLcBTgNQJVO

  下面把重要的参数说明一下,没提到的说明就不那么重要了:

  • __biz:相当于是当前公众号的id(唯一固定标志)
  • offset:文章数据接口请求偏移量标志(从0开始),每次返回的json数据中会有下一次请求的offset,注意这里并不是按某些规则递增的
  • count:每次请求的数据量(亲测最多可以是10)
  • pass_ticket:可以理解是请求票据,而且隔一段时间后(大概几个小时)就会过期,这也是为什么微信公众号比较难按固定规则进行抓取的原因
  • appmsg_token:同样理解为非固定有过期策略的票据
  • Cookie:使用的时候可以把整段贴上去,但最少仅需要wap_sid2这部分

  是不是感觉有点麻烦,毕竟不是要搞大规模专业的爬虫,所以单就一个公众号这么分析下来,还是可以往下继续的,贴上截取的一段json数据,用于设计文章数据表:

{
    "ret": 0,
    "errmsg": "ok",
    "msg_count": 10,
    "can_msg_continue": 1,
    "general_msg_list": "{\"list\":[{\"comm_msg_info\":{\"id\":1000005700,\"type\":49,\"datetime\":1535100943,\"fakeid\":\"3264997043\",\"status\":2,\"content\":\"\"},\"app_msg_ext_info\":{\"title\":\"金融危机又十年:钱荒之下,二手基金迎来高光时刻\",\"digest\":\"退出永远是基金的主旋律。\",\"content\":\"\",\"fileid\":100034824,\"content_url\":\"http:\\/\\/mp.weixin.qq.com\\/s?__biz=MzI2NDk5NzA0Mw==&mid=2247518479&idx=1&sn=124ab52f7478c1069a6b4592cdf3c5f5&chksm=eaa6d8d3ddd151c5bb95a7ae118de6d080023246aa0a419e1d53bfe48a8d9a77e52b752d9b80&scene=27#wechat_redirect\",\"source_url\":\"\",\"cover\":\"http:\\/\\/mmbiz.qpic.cn\\/mmbiz_jpg\\/QicyPhNHD5vYgdpprkibtnWCAN7l4ZaqibKvopNyCWWLQAwX7QpzWicnQSVfcBZmPrR5YuHS45JIUzVjb0dZTiaLPyA\\/0?wx_fmt=jpeg\",\"subtype\":9,\"is_multi\":0,\"multi_app_msg_item_list\":[],\"author\":\"石亚琼\",\"copyright_stat\":11,\"duration\":0,\"del_flag\":1,\"item_show_type\":0,\"audio_fileid\":0,\"play_url\":\"\",\"malicious_title_reason_id\":0,\"malicious_content_type\":0}}]}",
    "next_offset": 20,
    "video_count": 1,
    "use_video_tab": 1,
    "real_type": 0
}

  可以简单抽取想要的数据,这里将文章表结构定义如下,顺便贴上建表的SQL语句:

文章数据表
文章数据表
-- ----------------------------
-- Table structure for tb_article
-- ----------------------------
DROP TABLE IF EXISTS "public"."tb_article";
CREATE TABLE "public"."tb_article" (
  "id" serial4 PRIMARY KEY,
  "msg_id" int8 NOT NULL,
  "title" varchar(200) COLLATE "pg_catalog"."default" NOT NULL,
  "author" varchar(20) COLLATE "pg_catalog"."default",
  "cover" varchar(500) COLLATE "pg_catalog"."default",
  "digest" varchar(200) COLLATE "pg_catalog"."default",
  "source_url" varchar(800) COLLATE "pg_catalog"."default",
  "content_url" varchar(600) COLLATE "pg_catalog"."default" NOT NULL,
  "post_time" timestamp(6),
  "create_time" timestamp(6) NOT NULL
)
;
COMMENT ON COLUMN "public"."tb_article"."id" IS '自增主键';
COMMENT ON COLUMN "public"."tb_article"."msg_id" IS '消息id (唯一)';
COMMENT ON COLUMN "public"."tb_article"."title" IS '标题';
COMMENT ON COLUMN "public"."tb_article"."author" IS '作者';
COMMENT ON COLUMN "public"."tb_article"."cover" IS '封面图';
COMMENT ON COLUMN "public"."tb_article"."digest" IS '关键字';
COMMENT ON COLUMN "public"."tb_article"."source_url" IS '原文地址';
COMMENT ON COLUMN "public"."tb_article"."content_url" IS '文章地址';
COMMENT ON COLUMN "public"."tb_article"."post_time" IS '发布时间';
COMMENT ON COLUMN "public"."tb_article"."create_time" IS '入库时间';
COMMENT ON TABLE "public"."tb_article" IS '公众号文章表';

-- ----------------------------
-- Indexes structure for table tb_article
-- ----------------------------
CREATE UNIQUE INDEX "unique_msg_id" ON "public"."tb_article" USING btree (
  "msg_id" "pg_catalog"."int8_ops" ASC NULLS LAST
);

  附请求文章接口并解析数据保存到数据库的相关代码:

class WxMps(object):
    """微信公众号文章、评论抓取爬虫"""

    def __init__(self, _biz, _pass_ticket, _app_msg_token, _cookie, _offset=0):
        self.offset = _offset
        self.biz = _biz  # 公众号标志
        self.msg_token = _app_msg_token  # 票据(非固定)
        self.pass_ticket = _pass_ticket  # 票据(非固定)
        self.headers = {
            'Cookie': _cookie,  # Cookie(非固定)
            'User-Agent': 'Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/57.0.2987.132 '
        }
        wx_mps = 'wxmps'  # 这里数据库、用户、密码一致(需替换成实际的)
        self.postgres = pgs.Pgs(host='localhost', port='5432', db_name=wx_mps, user=wx_mps, password=wx_mps)

    def start(self):
        """请求获取公众号的文章接口"""

        offset = self.offset
        while True:
            api = 'https://mp.weixin.qq.com/mp/profile_ext?action=getmsg&__biz={0}&f=json&offset={1}' \
                  '&count=10&is_ok=1&scene=124&uin=777&key=777&pass_ticket={2}&wxtoken=&appmsg_token' \
                  '={3}&x5=1&f=json'.format(self.biz, offset, self.pass_ticket, self.msg_token)

            resp = requests.get(api, headers=self.headers).json()
            ret, status = resp.get('ret'), resp.get('errmsg')  # 状态信息
            if ret == 0 or status == 'ok':
                print('Crawl article: ' + api)
                offset = resp['next_offset']  # 下一次请求偏移量
                general_msg_list = resp['general_msg_list']
                msg_list = json.loads(general_msg_list)['list']  # 获取文章列表
                for msg in msg_list:
                    comm_msg_info = msg['comm_msg_info']  # 该数据是本次推送多篇文章公共的
                    msg_id = comm_msg_info['id']  # 文章id
                    post_time = datetime.fromtimestamp(comm_msg_info['datetime'])  # 发布时间
                    # msg_type = comm_msg_info['type']  # 文章类型
                    # msg_data = json.dumps(comm_msg_info, ensure_ascii=False)  # msg原数据

                    app_msg_ext_info = msg.get('app_msg_ext_info')  # article原数据
                    if app_msg_ext_info:
                        # 本次推送的首条文章
                        self._parse_articles(app_msg_ext_info, msg_id, post_time)
                        # 本次推送的其余文章
                        multi_app_msg_item_list = app_msg_ext_info.get('multi_app_msg_item_list')
                        if multi_app_msg_item_list:
                            for item in multi_app_msg_item_list:
                                msg_id = item['fileid']  # 文章id
                                if msg_id == 0:
                                    msg_id = int(time.time() * 1000)  # 设置唯一id,解决部分文章id=0出现唯一索引冲突的情况
                                self._parse_articles(item, msg_id, post_time)
                print('next offset is %d' % offset)
            else:
                print('Before break , Current offset is %d' % offset)
                break

    def _parse_articles(self, info, msg_id, post_time):
        """解析嵌套文章数据并保存入库"""

        title = info.get('title')  # 标题
        cover = info.get('cover')  # 封面图
        author = info.get('author')  # 作者
        digest = info.get('digest')  # 关键字
        source_url = info.get('source_url')  # 原文地址
        content_url = info.get('content_url')  # 微信地址
        # ext_data = json.dumps(info, ensure_ascii=False)  # 原始数据

        self.postgres.handler(self._save_article(), (msg_id, title, author, cover, digest,
                                                                  source_url, content_url, post_time,
                                                                  datetime.now()), fetch=True)
                                                                  
    @staticmethod
    def _save_article():
        sql = 'insert into tb_article(msg_id,title,author,cover,digest,source_url,content_url,post_time,create_time) ' \
              'values(%s,%s,%s,%s,%s,%s,%s,%s,%s)'
        return sql  
        
if __name__ == '__main__':
    biz = 'MzI2NDk5NzA0Mw=='  # "36氪"
    pass_ticket = 'NDndxxaZ7p6Z9PYulWpLqMbI0i3ULFeCPIHBFu1sf5pX2IhkGfyxZ6b9JieSYRUy'
    app_msg_token = '971_Z0lVNQBcGsWColSubRO9H13ZjrPhjuljyxLtiQ~~'
    cookie = 'wap_sid2=CO3YwOQHEogBQnN4VTNhNmxQWmc3UHI2U3kteWhUeVExZHFVMnN0QXlsbzVJRUJKc1pkdVFUU2Y5UzhSVEtOZmt1VVlYTkR4SEllQ2huejlTTThJWndMQzZfYUw2SldLVGVMQUthUjc3QWdVMUdoaGN0Nml2SU05cXR1dTN2RkhRUVd1V2Y3SFJ5d01BQUF+fjCB1pLcBTgNQJVO'

    # 以上信息不同公众号每次抓取都需要借助抓包工具做修改
    wxMps = WxMps(biz, pass_ticket, app_msg_token, cookie)
    wxMps.start()  # 开始爬取文章

分析文章评论接口

  获取评论的思路大致是一样的,只是会更加麻烦一点。首先在手机端点开一篇有评论的文章,然后查看Fiddler抓取的请求:

公众号文章评论
公众号文章评论
公众号文章评论接口抓包请求
公众号文章评论接口抓包请求

  提取其中的URL和Cookie再次分析:

https://mp.weixin.qq.com/mp/appmsg_comment?action=getcomment&scene=0&__biz=MzI2NDk5NzA0Mw==&appmsgid=2247518723&idx=1&comment_id=433253969406607362&offset=0&limit=100&uin=777&key=777&pass_ticket=NDndxxaZ7p6Z9PYulWpLqMbI0i3ULFeCPIHBFu1sf5pX2IhkGfyxZ6b9JieSYRUy&wxtoken=777&devicetype=android-26&clientversion=26070237&appmsg_token=971_dLK7htA1j8LbMUk8pvJKRlC_o218HEgwDbS9uARPOyQ34_vfXv3iDstqYnq2gAyze1dBKm4ZMTlKeyfx&x5=1&f=json
Cookie: pgv_pvid=2027337976; pgv_info=ssid=s3015512850; rewardsn=; wxuin=2089823341; devicetype=android-26; version=26070237; lang=zh_CN; pass_ticket=NDndxxaZ7p6Z9PYulWpLqMbI0i3ULFeCPIHBFu1sf5pX2IhkGfyxZ6b9JieSYRUy; wap_sid2=CO3YwOQHEogBdENPSVdaS3pHOWc1V2QzY1NvZG9PYk1DMndPS3NfbGlHM0Vfal8zLU9kcUdkWTQxdUYwckFBT3RZM1VYUXFaWkFad3NVaWFXZ28zbEFIQ2pTa1lqZktfb01vcGdPLTQ0aGdJQ2xOSXoxTVFvNUg3SVpBMV9GRU1lbnotci1MWWl5d01BQUF+fjCj45PcBTgNQAE=; wxtokenkey=777

  接着分析参数:

  • __biz:同上
  • pass_ticket:同上
  • Cookie:同上
  • offset和limit:代表偏移量和请求数量,由于公众号评论最多展示100条,所以这两个参数也不用改它
  • comment_id:获取文章评论数据的标记id,固定但需要从当前文章结构(Html)解析提取
  • appmsgid:票据id,非固定每次需要从当前文章结构(Html)解析提取
  • appmsg_token:票据token,非固定每次需要从当前文章结构(Html)解析提取

  可以看到最后三个参数要解析html获取(当初真的找了好久才想到看文章网页结构)。从文章请求接口可以获得文章地址,对应上面的content_url字段,但请求该地址前仍需要对url做相关处理,不然上面三个参数会有缺失,也就获取不到后面评论内容:

       def _parse_article_detail(self, content_url, article_id):
        """从文章页提取相关参数用于获取评论,article_id是已保存的文章id"""

        try:
            api = content_url.replace('amp;', '').replace('#wechat_redirect', '').replace('http', 'https')
            html = requests.get(api, headers=self.headers).text
        except:
            print('获取评论失败' + content_url)
        else:
            # group(0) is current line
            str_comment = re.search(r'var comment_id = "(.*)" \|\| "(.*)" \* 1;', html)
            str_msg = re.search(r"var appmsgid = '' \|\| '(.*)'\|\|", html)
            str_token = re.search(r'window.appmsg_token = "(.*)";', html)

            if str_comment and str_msg and str_token:
                comment_id = str_comment.group(1)  # 评论id(固定)
                app_msg_id = str_msg.group(1)  # 票据id(非固定)
                appmsg_token = str_token.group(1)  # 票据token(非固定)

  再回来看该接口返回的json数据,分析结构后然后定义数据表(含SQL):

文章评论数据表
文章评论数据表
-- ----------------------------
-- Table structure for tb_article_comment
-- ----------------------------
DROP TABLE IF EXISTS "public"."tb_article_comment";
CREATE TABLE "public"."tb_article_comment" (
  "id" serial4 PRIMARY KEY,
  "article_id" int4 NOT NULL,
  "comment_id" varchar(50) COLLATE "pg_catalog"."default",
  "nick_name" varchar(50) COLLATE "pg_catalog"."default" NOT NULL,
  "logo_url" varchar(300) COLLATE "pg_catalog"."default",
  "content_id" varchar(50) COLLATE "pg_catalog"."default" NOT NULL,
  "content" varchar(3000) COLLATE "pg_catalog"."default" NOT NULL,
  "like_num" int2,
  "comment_time" timestamp(6),
  "create_time" timestamp(6) NOT NULL
)
;
COMMENT ON COLUMN "public"."tb_article_comment"."id" IS '自增主键';
COMMENT ON COLUMN "public"."tb_article_comment"."article_id" IS '文章外键id';
COMMENT ON COLUMN "public"."tb_article_comment"."comment_id" IS '评论接口id';
COMMENT ON COLUMN "public"."tb_article_comment"."nick_name" IS '用户昵称';
COMMENT ON COLUMN "public"."tb_article_comment"."logo_url" IS '头像地址';
COMMENT ON COLUMN "public"."tb_article_comment"."content_id" IS '评论id (唯一)';
COMMENT ON COLUMN "public"."tb_article_comment"."content" IS '评论内容';
COMMENT ON COLUMN "public"."tb_article_comment"."like_num" IS '点赞数';
COMMENT ON COLUMN "public"."tb_article_comment"."comment_time" IS '评论时间';
COMMENT ON COLUMN "public"."tb_article_comment"."create_time" IS '入库时间';
COMMENT ON TABLE "public"."tb_article_comment" IS '公众号文章评论表';

-- ----------------------------
-- Indexes structure for table tb_article_comment
-- ----------------------------
CREATE UNIQUE INDEX "unique_content_id" ON "public"."tb_article_comment" USING btree (
  "content_id" COLLATE "pg_catalog"."default" "pg_catalog"."text_ops" ASC NULLS LAST
);

  万里长征快到头了,最后贴上这部分代码,由于要先获取文章地址,所以和上面获取文章数据的代码是一起的:

import json
import re
import time
from datetime import datetime

import requests

from utils import pgs


class WxMps(object):
    """微信公众号文章、评论抓取爬虫"""

    def __init__(self, _biz, _pass_ticket, _app_msg_token, _cookie, _offset=0):
        self.offset = _offset
        self.biz = _biz  # 公众号标志
        self.msg_token = _app_msg_token  # 票据(非固定)
        self.pass_ticket = _pass_ticket  # 票据(非固定)
        self.headers = {
            'Cookie': _cookie,  # Cookie(非固定)
            'User-Agent': 'Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/57.0.2987.132 '
        }
        wx_mps = 'wxmps'  # 这里数据库、用户、密码一致(需替换成实际的)
        self.postgres = pgs.Pgs(host='localhost', port='5432', db_name=wx_mps, user=wx_mps, password=wx_mps)

    def start(self):
        """请求获取公众号的文章接口"""

        offset = self.offset
        while True:
            api = 'https://mp.weixin.qq.com/mp/profile_ext?action=getmsg&__biz={0}&f=json&offset={1}' \
                  '&count=10&is_ok=1&scene=124&uin=777&key=777&pass_ticket={2}&wxtoken=&appmsg_token' \
                  '={3}&x5=1&f=json'.format(self.biz, offset, self.pass_ticket, self.msg_token)

            resp = requests.get(api, headers=self.headers).json()
            ret, status = resp.get('ret'), resp.get('errmsg')  # 状态信息
            if ret == 0 or status == 'ok':
                print('Crawl article: ' + api)
                offset = resp['next_offset']  # 下一次请求偏移量
                general_msg_list = resp['general_msg_list']
                msg_list = json.loads(general_msg_list)['list']  # 获取文章列表
                for msg in msg_list:
                    comm_msg_info = msg['comm_msg_info']  # 该数据是本次推送多篇文章公共的
                    msg_id = comm_msg_info['id']  # 文章id
                    post_time = datetime.fromtimestamp(comm_msg_info['datetime'])  # 发布时间
                    # msg_type = comm_msg_info['type']  # 文章类型
                    # msg_data = json.dumps(comm_msg_info, ensure_ascii=False)  # msg原数据

                    app_msg_ext_info = msg.get('app_msg_ext_info')  # article原数据
                    if app_msg_ext_info:
                        # 本次推送的首条文章
                        self._parse_articles(app_msg_ext_info, msg_id, post_time)
                        # 本次推送的其余文章
                        multi_app_msg_item_list = app_msg_ext_info.get('multi_app_msg_item_list')
                        if multi_app_msg_item_list:
                            for item in multi_app_msg_item_list:
                                msg_id = item['fileid']  # 文章id
                                if msg_id == 0:
                                    msg_id = int(time.time() * 1000)  # 设置唯一id,解决部分文章id=0出现唯一索引冲突的情况
                                self._parse_articles(item, msg_id, post_time)
                print('next offset is %d' % offset)
            else:
                print('Before break , Current offset is %d' % offset)
                break

    def _parse_articles(self, info, msg_id, post_time):
        """解析嵌套文章数据并保存入库"""

        title = info.get('title')  # 标题
        cover = info.get('cover')  # 封面图
        author = info.get('author')  # 作者
        digest = info.get('digest')  # 关键字
        source_url = info.get('source_url')  # 原文地址
        content_url = info.get('content_url')  # 微信地址
        # ext_data = json.dumps(info, ensure_ascii=False)  # 原始数据

        content_url = content_url.replace('amp;', '').replace('#wechat_redirect', '').replace('http', 'https')
        article_id = self.postgres.handler(self._save_article(), (msg_id, title, author, cover, digest,
                                                                  source_url, content_url, post_time,
                                                                  datetime.now()), fetch=True)
        if article_id:
            self._parse_article_detail(content_url, article_id)

    def _parse_article_detail(self, content_url, article_id):
        """从文章页提取相关参数用于获取评论,article_id是已保存的文章id"""

        try:
            html = requests.get(content_url, headers=self.headers).text
        except:
            print('获取评论失败' + content_url)
        else:
            # group(0) is current line
            str_comment = re.search(r'var comment_id = "(.*)" \|\| "(.*)" \* 1;', html)
            str_msg = re.search(r"var appmsgid = '' \|\| '(.*)'\|\|", html)
            str_token = re.search(r'window.appmsg_token = "(.*)";', html)

            if str_comment and str_msg and str_token:
                comment_id = str_comment.group(1)  # 评论id(固定)
                app_msg_id = str_msg.group(1)  # 票据id(非固定)
                appmsg_token = str_token.group(1)  # 票据token(非固定)

                # 缺一不可
                if appmsg_token and app_msg_id and comment_id:
                    print('Crawl article comments: ' + content_url)
                    self._crawl_comments(app_msg_id, comment_id, appmsg_token, article_id)

    def _crawl_comments(self, app_msg_id, comment_id, appmsg_token, article_id):
        """抓取文章的评论"""

        api = 'https://mp.weixin.qq.com/mp/appmsg_comment?action=getcomment&scene=0&__biz={0}' \
              '&appmsgid={1}&idx=1&comment_id={2}&offset=0&limit=100&uin=777&key=777' \
              '&pass_ticket={3}&wxtoken=777&devicetype=android-26&clientversion=26060739' \
              '&appmsg_token={4}&x5=1&f=json'.format(self.biz, app_msg_id, comment_id,
                                                     self.pass_ticket, appmsg_token)
        resp = requests.get(api, headers=self.headers).json()
        ret, status = resp['base_resp']['ret'], resp['base_resp']['errmsg']
        if ret == 0 or status == 'ok':
            elected_comment = resp['elected_comment']
            for comment in elected_comment:
                nick_name = comment.get('nick_name')  # 昵称
                logo_url = comment.get('logo_url')  # 头像
                comment_time = datetime.fromtimestamp(comment.get('create_time'))  # 评论时间
                content = comment.get('content')  # 评论内容
                content_id = comment.get('content_id')  # id
                like_num = comment.get('like_num')  # 点赞数
                # reply_list = comment.get('reply')['reply_list']  # 回复数据

                self.postgres.handler(self._save_article_comment(), (article_id, comment_id, nick_name, logo_url,
                                                                     content_id, content, like_num, comment_time,
                                                                     datetime.now()))

    @staticmethod
    def _save_article():
        sql = 'insert into tb_article(msg_id,title,author,cover,digest,source_url,content_url,post_time,create_time) ' \
              'values(%s,%s,%s,%s,%s,%s,%s,%s,%s) returning id'
        return sql

    @staticmethod
    def _save_article_comment():
        sql = 'insert into tb_article_comment(article_id,comment_id,nick_name,logo_url,content_id,content,like_num,' \
              'comment_time,create_time) values(%s,%s,%s,%s,%s,%s,%s,%s,%s)'
        return sql


if __name__ == '__main__':
    biz = 'MzI2NDk5NzA0Mw=='  # "36氪"
    pass_ticket = 'NDndxxaZ7p6Z9PYulWpLqMbI0i3ULFeCPIHBFu1sf5pX2IhkGfyxZ6b9JieSYRUy'
    app_msg_token = '971_Z0lVNQBcGsWColSubRO9H13ZjrPhjuljyxLtiQ~~'
    cookie = 'wap_sid2=CO3YwOQHEogBQnN4VTNhNmxQWmc3UHI2U3kteWhUeVExZHFVMnN0QXlsbzVJRUJKc1pkdVFUU2Y5UzhSVEtOZmt1VVlYTkR4SEllQ2huejlTTThJWndMQzZfYUw2SldLVGVMQUthUjc3QWdVMUdoaGN0Nml2SU05cXR1dTN2RkhRUVd1V2Y3SFJ5d01BQUF+fjCB1pLcBTgNQJVO'
    # 以上信息不同公众号每次抓取都需要借助抓包工具做修改
    wxMps = WxMps(biz, pass_ticket, app_msg_token, cookie)
    wxMps.start()  # 开始爬取文章及评论

文末小结

  最后展示下数据库里的数据,单线程爬的慢而且又没这方面的数据需求,所以也只是随便试了下手:

抓取的部分数据
抓取的部分数据

  有时候写爬虫是个细心活,如果觉得太麻烦的话,推荐了解下WechatSogou这个工具。有问题的欢迎底部留言讨论。

完整代码:GitHub

目录
相关文章
|
17天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
111 70
|
19天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
121 68
|
15天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
92 36
|
9天前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
54 15
|
13天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
71 18
|
20天前
|
Android开发 开发者 Python
通过标签清理微信好友:Python自动化脚本解析
微信已成为日常生活中的重要社交工具,但随着使用时间增长,好友列表可能变得臃肿。本文介绍了一个基于 Python 的自动化脚本,利用 `uiautomator2` 库,通过模拟用户操作实现根据标签批量清理微信好友的功能。脚本包括环境准备、类定义、方法实现等部分,详细解析了如何通过标签筛选并删除好友,适合需要批量管理微信好友的用户。
26 7
|
22天前
|
测试技术 开发者 Python
使用Python解析和分析源代码
本文介绍了如何使用Python的`ast`模块解析和分析Python源代码,包括安装准备、解析源代码、分析抽象语法树(AST)等步骤,展示了通过自定义`NodeVisitor`类遍历AST并提取信息的方法,为代码质量提升和自动化工具开发提供基础。
38 8
|
22天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现深度学习模型:智能食品市场分析
使用Python实现深度学习模型:智能食品市场分析
33 0
|
7月前
|
开发者
微信公众平台开发基本配置
微信公众平台开发基本配置
171 0
|
6月前
|
Java API
java进行微信公众号开发
java进行微信公众号开发
155 0
下一篇
DataWorks