朱晔的互联网架构实践心得S1E4:简单好用的监控六兄弟

本文涉及的产品
可观测可视化 Grafana 版,10个用户账号 1个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: 朱晔的互联网架构实践心得S1E4:简单好用的监控六兄弟 【下载本文PDF进行阅读】 这里所说的六兄弟只指ELK套件(ElasticSearch+Logstash+Kibana)以及TIG套件(Telegraf+InfluxDb+Grafana)。

朱晔的互联网架构实践心得S1E4:简单好用的监控六兄弟

下载本文PDF进行阅读

这里所说的六兄弟只指ELK套件(ElasticSearch+Logstash+Kibana)以及TIG套件(Telegraf+InfluxDb+Grafana)。

 

上图显示了两套独立的体系,ELK和TIG(TIG是我自己编出来的,网上没有类似于ELK这种约定俗成的说法):

这两套体系都由收集器+存储+展示网站构成,青绿色的收集器,蓝绿色的存储,红色的展示网站。

这两套体系都有免费的组件可以使用,安装配置也相对简单(当然公司也要赚钱,他们肯定都主推Cloud版本,一般也不会用Cloud版本,肯定本地部署)。

ELK体系更多用于日志类数据的收集、保存、搜索、查看、报警。

TIG体系更多用于各种Metrics指标类数据的收集、保存、查看、报警。

对于ELK,由于日志数据量往往较大,并且突发日志激增的情况很普遍,写入索引没有这么快,所以一般会引入Kafka之类的消息队列在之前挡一挡。

对于ELK,在进入ES之前数据会有一些过滤解析和额外的报警之类的需求,所以可以使用logstash在之前作为一个汇聚处理层,利用丰富的插件做各种处理。但是logstash的性能不是那么高,对资源的消耗很厉害,使用的时候需要注意。

 

有关ELK

 

上图是Kibana的界面,这里可以看到我们把微服务各个组件的日志都收集到了ES中,在Kibana上可以使用表达式进行各种搜索,最常用的就是按照串联微服务整个流程的RequestID或用户的UserID搜索相关日志了。很多公司的开发习惯到服务器上去一台一台搜索日志,好一点会用ansible批量搜索,这样其实是非常不方便的:

  • 文本的搜索会比ES索引数据库的搜索慢的多。
  • 文本的搜索遇到文件大的话,占用服务器相当多的内存和CPU资源,影响到业务的进行。
  • 文件日志一般会进行归档和压缩,想要搜索非当日的日志不那么方便。
  • 权限不太好控制,而且原始的文件日志对外开放查询的话可能会有安全问题有信息泄露风险。
  • 在把数据统一收集到ES的过程中,我们可以做很多额外的工作,包括脱敏,存储到其它数据源,发邮件和IM通知(比如可以和Slack或钉钉机器人整合)等等。

 

有关异常

我一直有一个观点,我认为再怎么强调异常都不过分,特别是一直上抛到业务表面的未处理异常以及服务中的系统异常。我们可以把异常区分为业务逻辑主动产生的可以预先知道是咋回事的业务异常以及无法预先知道的系统异常。对于系统异常往往意味着底层基础设施(如网络、数据库、中间件)等有抖动或故障或是代码中有Bug(即使不是Bug也是逻辑不完善的情况),每一个异常,我们都需要逐一进行排查调查出根本原因,如果暂时没有时间调查的话,需要记录在案有时间再去调查。对于有些业务量特别大的系统,每天会有几十万的异常,大概有100+以上的情况。最差最差那就做到这几点吧:

  • 全面梳理代码,千万不要吃掉异常了,往往很多时候Bug无法找到原因就是不知道这里吃掉的到底是什么异常。使用ELK我们可以很方便搜索过滤日志,多记一点异常或非正常流程的Error非常有助于我们修Bug。
  • 我们需要对异常出现的频次进行监控和报警,比如XXException最近1分钟有200条异常,时间久了我们会对这些异常有感觉,看到这样的量我们知道这必然是抖动,如果出现XXException最近1分钟有10000条异常,那么我们知道这不一定是网络抖动了,这是依赖服务挂的节奏,马上需要启动应急响应的排查流程。
  • 确保100%关注和处理好空指针、数组越界、并发错误之类的异常,这每一个异常基本就是一个Bug了,会导致业务无法继续的,有的时候这些异常因为绝对数量小会在众多异常中埋没,需要每天单独看这些异常进行逐一解决。这一个异常如果影响到了一个用户正常的流程,那么这个用户可能就流失了,虽然这一个用户只是千万用户中的一员,但是给这一个用户带来的感受是很差的。我一直觉得我们要先于用户发现问题解决问题,最好是等到客服反馈过来的时候(大多数非付费类互联网产品的用户不会因为遇到一个阻碍流程的问题去打客服电话,而是选择放弃这个产品)已经是一个带有修复时间点的已知问题。

做的更好一点甚至我们可以为每一个错误分配一个ID,如果这个错误有机会透传到用户这端,在500页面上不那么明显的地方显示一下这个ID,如果用户截屏反馈问题的话,可以轻易通过这个错误ID在ELK中找到相应错误,一键定位问题。

 

有关TIG

 

上图是Grafana的截图,Grafana支持挺多数据源,InfluxDb也是其中的一个数据源,类似于InfluxDb的产品还有Graphite,也是不错的选择。Telegraf是InfluxDb公司的收集数据的Agent套件,会有相当多的插件,这些插件并不复杂,自己也可以通过Python简单编写,就是有点费时间,有现成的么就用,说白了就是从各个中间件暴露出来的Stats接口收集格式化数据然后写入InfluxDb中去。我们来看看Telegraf支持的插件(图片截取自https://github.com/influxdata/telegraf):

 

使用这些插件运维或开发自己不需要费什么力气就可以把我们所有的基础组件都监控起来了。

 

有关打点

如文本一开始的架构图所示,除了我们可以使用Telegraf的各种插件来收集各种存储、中间件、系统层面的指标之外,我们还做了一个MetricsClient小类库,让程序可以把各种打点的数据保存到InfluxDb。其实每一条进入InfluxDb的Measurement记录只是一个事件,有下面这些信息:

  • 时间戳
  • 各种用于搜索的Tag
  • 值(耗时、执行次数)

如下图我们可以看到在这个bankservice中,我们记录了各种异步同步操作的成功、业务异常、系统异常事件,然后在Grafana进行简单的配置,就可以呈现出需要的图了。

 

对于MetricsClient,可以在代码中手工调用也可以使用AOP的方式进行调用,我们甚至可以为所有方法加上这个关注点,自动收集方法的执行次数、时间、结果(正常、业务异常、系统异常)打点记录到InfluxDb中,然后在Grafana配置自己需要的Dashboard用于监控。

对于RPC框架也是建议框架内部自动整合打点的,保存RPC方法每次执行的情况,细化到方法的粒度配置出一些图表来,在出现事故的时候一键定位到疑似出问题的方法。通过AOP方+RPC框架自动打点其实已经可以覆盖大部分需求了,当然如果我们在代码中再加一些业务层面的打点就更好了。

如果我们为每一个业务行为,配置两个图,一个是调用量,一个是调用性能,如下图:

 

那么:

  • 出现问题的时候,我们可以在很短的时间内判断出哪块有问题。
  • 还可以初步判断出问题的原因是异常导致还是突增的压力所致。

这里推荐的配置方式是根据数据流,从前到后,每一个环节配置一下数据处理的数量和性能:

  • 上游进来的数据
  • 发送到MQ的数据
  • MQ接收到的数据
  • MQ处理完成的数据
  • 和外部交互的请求
  • 得到外部响应的请求
  • 落库的请求
  • 查缓存的请求

出了问题可以及时定位到出问题的模块,或至少是业务线,会比无头苍蝇好很多(当然,如果我们没有事先配置自己需要的Dashboard那也是白搭)。Dashboard一定是需要随着业务的迭代不断去维护的,别经过几轮迭代之前的打点早已废弃,到出了问题的时候再看Dashboard全是0调用。

 

其它

 

Grafana对接InfluxDb数据源挺好的,但是对接MySQL做一些查询总感觉不是特别方便,这里推荐一个开源的系统Metabase,我们可以方便得保存一些SQL进行做一些业务或监控之类的统计。你可能会说了,这些业务统计是运营关注的,而且我们由BI,我们需要自己做这些图表干啥,我想说我们即使搞技术也最好有一个自己的小业务面板,不是说关注业务量而是能有一个地方让我们知道业务跑的情况,在关键的时候看一眼判断一下影响范围。

 

好了,说到这里,你是否已看到了通过这六兄弟,其实我们打造的是一个立体化的监控体系,分享一个排查问题的几步走方式吧,毕竟在出大问题的时候我们的时间往往就只有那么几分钟:

  • 关注异常或系统层面的压力报警,关注业务量掉0(指的是突然下落30%以上)报警。
  • 通过Grafana面板配置的业务Dashboard判断系统哪个模块有压力问题、性能问题。
  • 通过Grafana面板配置的服务调用量和业务进出量,排除上下游问题,定位出问题的模块。
  • 通过Kibana查看相应模块是否出现错误或异常。
  • 根据客户反馈的错误截屏,找到错误ID,在Kibana中搜索全链路日志找问题。
  • 对于细节问题,还有一招就是查请求日志了。我们可以在Web端的系统做一个开关,根据一定的条件可以开启记录详细的Request和Response HTTP Log的开关,有了每一个请求详细的数据,我们可以根据用户信息“看到”用户访问网站的整个过程,这非常有助于我们排查问题。当然,这个数据量可能会非常大,所以需要慎重开启这么重的Trace功能。

有打点、有错误日志、有详细请求日志,还怕定位不到问题?

 

作者: lovecindywang
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。
相关实践学习
通过可观测可视化Grafana版进行数据可视化展示与分析
使用可观测可视化Grafana版进行数据可视化展示与分析。
相关文章
|
1天前
|
负载均衡 Serverless 持续交付
云端问道9期实践教学-省心省钱的云上Serverless高可用架构
详细介绍了云上Serverless高可用架构的一键部署流程
26 10
|
15天前
|
弹性计算 Java 关系型数据库
Web应用上云经典架构实践教学
Web应用上云经典架构实践教学
Web应用上云经典架构实践教学
|
1天前
|
存储 人工智能 运维
面向AI的服务器计算软硬件架构实践和创新
阿里云在新一代通用计算服务器设计中,针对处理器核心数迅速增长(2024年超100核)、超多核心带来的业务和硬件挑战、网络IO与CPU性能增速不匹配、服务器物理机型复杂等问题,推出了磐久F系列通用计算服务器。该系列服务器采用单路设计减少爆炸半径,优化散热支持600瓦TDP,并实现CIPU节点比例灵活配比及部件模块化可插拔设计,提升运维效率和客户响应速度。此外,还介绍了面向AI的服务器架构挑战与软硬件结合创新,包括内存墙问题、板级工程能力挑战以及AI Infra 2.0服务器的开放架构特点。最后,探讨了大模型高效推理中的显存优化和量化压缩技术,旨在降低部署成本并提高系统效率。
|
3天前
|
运维 监控 安全
天财商龙:云上卓越架构治理实践
天财商龙成立于1998年,专注于为餐饮企业提供信息化解决方案,涵盖点餐、收银、供应链和会员系统等。自2013年起逐步实现业务上云,与阿里云合作至今已十年。通过采用阿里云的WA体系,公司在账号管理、安全保障、监控体系和成本管控等方面进行了全面优化,提升了业务稳定性与安全性,并实现了显著的成本节约。未来,公司将持续探索智能化和全球化发展,进一步提升餐饮行业的数字化水平。
|
3天前
|
运维 安全 架构师
架构师工具箱:Well-Architected云治理提效实践
本次分享基于阿里云Well-Architected Framework的最佳实践案例,涵盖企业从上云到优化的全过程。安畅作为国内领先的云管理服务提供商(Cloud MSP),拥有800多名员工,其中70%为技术工程师,为企业提供架构安全、数据智能等技术服务。内容包括Landing Zone与Well-Architected的关系、企业云治理现状及需求分析,重点探讨了安全合规、成本优化、资源稳定性和效率提升等方面的最佳实践,并通过具体客户案例展示了如何通过自动化工具和定制化解决方案帮助企业提升云上业务价值。
|
29天前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
|
2月前
|
Cloud Native Devops 云计算
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
47 3
|
2月前
|
Cloud Native 安全 数据安全/隐私保护
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####
|
29天前
|
Java 开发者 微服务
从单体到微服务:如何借助 Spring Cloud 实现架构转型
**Spring Cloud** 是一套基于 Spring 框架的**微服务架构解决方案**,它提供了一系列的工具和组件,帮助开发者快速构建分布式系统,尤其是微服务架构。
154 69
从单体到微服务:如何借助 Spring Cloud 实现架构转型
|
1月前
|
设计模式 负载均衡 监控
探索微服务架构下的API网关设计
在微服务的大潮中,API网关如同一座桥梁,连接着服务的提供者与消费者。本文将深入探讨API网关的核心功能、设计原则及实现策略,旨在为读者揭示如何构建一个高效、可靠的API网关。通过分析API网关在微服务架构中的作用和挑战,我们将了解到,一个优秀的API网关不仅要处理服务路由、负载均衡、认证授权等基础问题,还需考虑如何提升系统的可扩展性、安全性和可维护性。文章最后将提供实用的代码示例,帮助读者更好地理解和应用API网关的设计概念。
64 8

热门文章

最新文章