python实战,中文自然语言处理,应用jieba库来统计文本词频

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: 模块介绍安装:pip install jieba 即可jieba库,主要用于中文文本内容的分词,它有3种分词方法:1. 精确模式, 试图将句子最精确地切开,适合文本分析:2. 全模式,把句子中所有的可以成词的词语都扫描出来,速度非常快,但是不能解决歧义;3. 搜索引擎模式,在精确模式的基础上,对长词再词切分,提高召回率,适合用于搜索引擎分词。

python实战,中文自然语言处理,应用jieba库来统计文本词频

模块介绍

安装:pip install jieba 即可

jieba库,主要用于中文文本内容的分词,它有3种分词方法:

1. 精确模式, 试图将句子最精确地切开,适合文本分析:

2. 全模式,把句子中所有的可以成词的词语都扫描出来,速度非常快,但是不能解决歧义;

3. 搜索引擎模式,在精确模式的基础上,对长词再词切分,提高召回率,适合用于搜索引擎分词。

我们用个小例子演示下

python实战,中文自然语言处理,应用jieba库来统计文本词频

这上面的小例子中我们看到了一个问题,如果我们只是简简单单的将所有词切分出来,然后去统计它们出现的次数,那么你会发现,其中的“是”,“的”等等词语以及各种标点符号是出现频率最高的,那么这里有2种方式,1是直接去掉长度为1的所有词语,比如上面所说的“是”,“的”或者标点符号等等,还有一种呢,是用到了TF-IDF技术

TF-IDF (term frequency-inverse document frequency)是一种用于信息检索(information retrieval)与文本挖掘(text mining)的常用加权技术,比较容易理解的一个应用场景是当我们手头有一些文章时或者微博评论,我们希望计算机能够自动地进行关键词提取。而TF-IDF就是可以帮我们完成这项任务的一种统计方法。它能偶用于评估一个词语对于一个文集或一个语料库中的其中一份文档的重要程度。这个方法又称为”词频-逆文本频率”。

不好理解的话,我们一样来写一个小例子:

python实战,中文自然语言处理,应用jieba库来统计文本词频

withWeight=True 参数为是否返回权重值,默认是关闭的,我们直接打印出所有词和它对于的权重,就可以用于计算了!

python实战,中文自然语言处理,应用jieba库来统计文本词频

小说词频分析

简单的写个小demo,分析小说的词频,并将前10个打印出来!篇幅有限,就以《天龙八部》的第1章为例,大概有4万多个字符,直接上代码了!

python实战,中文自然语言处理,应用jieba库来统计文本词频

在第425行,进行分词,然后将结果进行遍历(426-433行),遍历中,剔除单个字符,每个词语和它所出现的次数写入字典,第434、435行将字典转化为元组所组成的列表,并依据出现次数进行排序,然后遍历列表,取出前10名。

第二段代码(441-445行)是依据权重取出了关键词,可以看出,这章小说,主要讲的就是段誉的事情了,不论是权重还是词频都是他最高。。。

文本内容有大概400多行,就折叠了,大家可以直接套用代码,自己试试。

python实战,中文自然语言处理,应用jieba库来统计文本词频

后记

今天的分享就这些了,python的自然语言处理其实还有好多内容,比如停止词的使用,词性等等好多,大家如果有兴趣,可以来找我一起深入学习!

相关文章
|
10天前
|
存储 人工智能 自然语言处理
Pandas数据应用:自然语言处理
本文介绍Pandas在自然语言处理(NLP)中的应用,涵盖数据准备、文本预处理、分词、去除停用词等常见任务,并通过代码示例详细解释。同时,针对常见的报错如`MemoryError`、`ValueError`和`KeyError`提供了解决方案。适合初学者逐步掌握Pandas与NLP结合的技巧。
51 20
|
2月前
|
自然语言处理 API C++
阿里通义推出SmartVscode插件,自然语言控制VS Code,轻松开发应用,核心技术开源!
SmartVscode插件深度解析:自然语言控制VS Code的革命性工具及其开源框架App-Controller
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
AI在自然语言处理中的突破:从理论到应用
AI在自然语言处理中的突破:从理论到应用
111 17
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用
随着人工智能技术的不断发展,自然语言处理(NLP)已经成为了一个重要的应用领域。本文将介绍一些常见的NLP任务和算法,并通过代码示例来展示如何实现这些任务。我们将讨论文本分类、情感分析、命名实体识别等常见任务,并使用Python和相关库来实现这些任务。最后,我们将探讨NLP在未来的发展趋势和挑战。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI在自然语言处理中的创新应用
本文旨在揭示人工智能技术如何革新自然语言处理领域。我们将从基础的文本分析到复杂的情感识别,逐步深入探讨AI如何提升语言理解的准确性和效率。文章将通过实际代码示例,展示AI技术在自然语言处理中的应用,并讨论其对日常生活的潜在影响。读者将获得关于AI技术在理解和生成自然语言方面的实用知识,以及如何将这些技术应用于解决现实世界问题的见解。
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
探索深度学习中的Transformer模型及其在自然语言处理中的应用
探索深度学习中的Transformer模型及其在自然语言处理中的应用
82 5
|
2月前
|
机器学习/深度学习 自然语言处理 监控
探索深度学习在自然语言处理中的应用与挑战
本文深入分析了深度学习技术在自然语言处理(NLP)领域的应用,并探讨了当前面临的主要挑战。通过案例研究,展示了如何利用神经网络模型解决文本分类、情感分析、机器翻译等任务。同时,文章也指出了数据稀疏性、模型泛化能力以及计算资源消耗等问题,并对未来的发展趋势进行了展望。
|
2月前
|
人工智能 自然语言处理 API
探索AI在自然语言处理中的应用
【10月更文挑战第34天】本文将深入探讨人工智能(AI)在自然语言处理(NLP)领域的应用,包括语音识别、机器翻译和情感分析等方面。我们将通过代码示例展示如何使用Python和相关库进行文本处理和分析,并讨论AI在NLP中的优势和挑战。
|
2月前
|
机器学习/深度学习 自然语言处理 知识图谱
GraphRAG在自然语言处理中的应用:从问答系统到文本生成
【10月更文挑战第28天】作为一名自然语言处理(NLP)和图神经网络(GNN)的研究者,我一直在探索如何将GraphRAG(Graph Retrieval-Augmented Generation)模型应用于各种NLP任务。GraphRAG结合了图检索和序列生成技术,能够有效地处理复杂的语言理解和生成任务。本文将从个人角度出发,探讨GraphRAG在构建问答系统、文本摘要、情感分析和自动文本生成等任务中的具体方法和案例研究。
97 5
|
Python
python编程:计算词频的函数绘制图形
python编程:计算词频的函数绘制图形
202 0
python编程:计算词频的函数绘制图形