无人驾驶入门2:高精度地图

简介:

自从上次发布了《无人驾驶入门1:无人驾驶概览》,就收到了不少的鼓励和鞭策,包括前领导的肯定。那我们赶紧来学习第二课关于高精度地图的课程吧。

第二课: 高精度地图

课程简介:了解高精度地图的实现逻辑,这是 Apollo 定位、感知、规划模块的基础。

1.地图简介

2.Sebastian介绍高精度地图

3.高精度地图vs传统地图

传统地图能够拥有导航路径规划、拥堵信息提示、多条路径规划的时间等信息,甚至可以获得路口是否有信号灯、道路上是否有测速照相等信息。

传统地图示意

高精度地图更包含了大量驾驶辅助信息,其中最重要的就是道路网的精确三维表征,比如交叉路口布局和路标位置等信息,高精度地图还包含了很多语义信息,包括信号灯颜色定义、道路限速信息、车辆转弯开始位置等。

高精度地图中的限速和转弯示意

高精度地图区别于传统地图的一个重要特征就是精度,传统地图只能有米级的精度,对于车辆来说,米级的精度是完全不够的。高精度地图做到了厘米级的精度,这对于确保无人驾驶的安全性至关重要。

传统地图的精度无法满足无人驾驶

4.地图与定位、感知与规划的关系_a

高精度地图是无人驾驶的核心组成部分,很多模块都依赖高精度地图。

高精度地图的一个重要功能就是自定位,拿定位和拼图来打比方,当你拿到一小块拼图,你是否能在地图中找到这个拼图所在的位置呢?

车辆当前位置附近地图是高精度地图的一小块拼图

无人驾驶需要知道自身所在地图的位置,首先车辆就需要寻找地标,车辆通过摄像头、雷达等传感器获得的信息同高精度地图上已知地标进行比较。

车辆寻找标记进行定位

这一匹配过程需要经过预处理、坐标转换、数据融合这几个复杂过程。预处理来消除不准确或质量差的数据,坐标转换将来自不同视角的数据转换为统一的坐标系,借助数据融合可以将来自各种车辆的传感器数据合并。

定位就是通过这几个复杂的过程完成的,通过高精度地图可以让车辆了解自身的位置。

5.地图与定位、感知与规划的关系_b

无人驾驶车可以使用高精度地图来帮助感知,车辆的传感器就像是人类的眼睛、耳朵,但同样会受到外界条件的影响,比如恶劣天气、夜间等,另外如果遇到障碍物,感知是无法了解障碍物背后的物体。

正因为如此,一方面地图可以帮助传感器提前预知事物位置,另一方面地图可以帮助传感器缩小检测范围,即让传感器仅检测感兴趣区域(ROI)。ROI可以提高传感器检测精确度和速度,可以节约计算资源。

感兴趣区域ROI

6.地图与定位、感知与规划的关系_c

高精度地图可以帮助车辆寻找合适的行车路线,可以帮助确定不同路线的选择,还能确定道路上其他车辆将来的位置。

比如高精度地图已经精确到车道线,所以车辆尽可能沿着车道中心线行驶;比如在人行横道、减速带等区域,通过高精度地图可以提前预知,提前减速;比如前方遇到障碍物需要变道,高精度地图可以帮助其缩小选择范围,获得最佳变道方案。

7.Apollo高精度地图

高精度地图专为无人驾驶设计,提供了道路定义、交叉路口、交通信号、车道规则以及汽车导航的其他元素,可以为无人驾驶车提供多方面的帮助。

比如高精度地图记录了信号灯的精确位置和高度信息,从而降低了感知难度。

交通信号灯位置和高度信息

地图更新是高精度地图中的一项重要工程,需要很多的作业车辆,对高精度地图不断进行验证和更新,同时要达到厘米级的精度,这需要非常高的制图技术。

高精度地图有很多格式,不同的格式就会导致系统的不兼容,为了便于共享,Apollo采用了OpenDrive格式,这是行业制图标准格式。

百度Apollo还开发了一套完善的采图绘图系统,其中90%的地图绘制流程实现了自动化。

8.Apollo高精度地图构建

高精度地图的构建由五个过程组成:数据采集、数据处理、对象检测、手动验证和地图发布。

高精度地图的五个构建过程

数据采集是一个巨大的工程,百度Apollo拥有近300辆专业车辆用于数据源采集,当然,这些数据采集车不仅仅用于数据采集,对于地图的维护和更新也非常的重要,他可以及时的更新地图数据。

专业车辆具有角度的传感器,比如GPS、惯性测量单元(IMU)、激光雷达和摄像机,Apollo定义了一个硬件框架,将这些传感器集成到单个自主系统中,通过将这些数据的融合,最终生成高精度地图。

配备了硬件设备的采集车

数据处理是指对手机的数据进行整理、分类以及清洗的过程,以获得没有任何语义信息或注释的初始地图模板。

对于对象检测,Apollo团队使用人工智能来检测静态对象并对其进行分类,包括车道线、交通标志甚至电线杆。

对象检测

手动验证可以确保自动地图创建过程正确并及时发现问题。

经过了上述过程的处理,地图可以进行发布,除了发布高精度地图,Apollo还发布了采用自上而下视图的相对定位地图以及三维点云地图。

相对定位地图和点云地图

在构建和更新地图的过程中,Apollo使用了众包,任何人都可以通过百度发布的工具参与制作高精度地图的任务,Apollo高精度地图众包可以通过智能手机、智能信息娱乐系统甚至是其他无人驾驶车来实现。

9.课程综述

课后小结

虽然个人从事导航地图已有十年,但学习高精度地图课程还是有不少的启发。

首先,高精度地图可以自定位。

这一点打破了原有的认知,或者需要转换一个角度来思考。

对于传统地图,都是真实世界的绝对位置地图,我们假定数据公司采集的地图都是真实准确的。而在导航软件中,获得GPS定位信号,再同地图进行匹配,可以即时获得地图中的定位信息,也就是知道了你在世界的哪个角落。GPS是一种传感器,但已经非常成熟,包括硬件和算法的成熟以及系统的稳定。所以,我们会认为地图定位非常容易,借助外部GPS即可。

而高精度地图,除了传统地图功能外,还可以通过地图中的特征(本视频中的地标,或其他公司所谓的指纹),进行自定位。既需要地图中的数据支持,也需要借助外部的传感器,这个传感器不是GPS,而是摄像机、雷达等,而其中的定位匹配算法并不像GPS定位算法这么简单,这也是无人驾驶技术中所需要克服的难题之一。

其次,高精度地图是三维的。

传统地图是二维的,以点线面为主,一方面本身不需要红绿灯、路灯等各种特征对象的高度信息,另一方面高程信息在导航中的应用并不多,显示建筑3D、高架立起或者山丘欺负,仅仅起到美观作用罢了。

而高精度地图,除了自定位的需要,同时还需要还原真实的世界,不仅仅需要认清可行驶的车道线,也需要识别马路牙子、隧道桥洞等信息。

再次,高精度地图的构建需要众包

传统地图的构建,基本都是地图数据公司作业车采集的成果,众人所能提供的信息,也仅仅是反馈。以前的离线地图更新,需要等待一个版本,一般至少要等一个季度,而即便现在的在线地图,从反馈、验证、修正到发布,也至少要数天的时间。我们仅仅是一个使用者,而无法成为创建者。

对于高精度地图来说,一个季度的更新实在太久,更新的频度是无法满足需求的。同时,高精度地图依然需要专业车辆的采集,作为专业数据输入源,但每一个自动驾驶车辆,又是数据贡献源,因为无人驾驶车的地图自定位同地图采集是想通的,甚至由于算法的一致性,数据验证也将变得简单。

基于此,更需要高精度地图众包,让众人参与到地图构建中,只为更精准的高精度地图数据。

既然opendrive format是开放的,那么谁会来主导一个类似openstreet map的众包项目呢?拭目以待。

目录
相关文章
|
3月前
|
数据采集 自动驾驶 算法
C语言自动驾驶实战项目:基于激光雷达的实时路径规划与避障系统
C语言自动驾驶实战项目:基于激光雷达的实时路径规划与避障系统
99 0
|
6月前
|
机器学习/深度学习 存储 数据采集
智能光栅光片显微成像技术的LabVIEW解决方案
智能光栅光片显微成像技术的LabVIEW解决方案
41 4
|
存储 自动驾驶 安全
基于轨迹优化的自动驾驶汽车跟随自行车模型动力学控制(Matlab代码实现)
基于轨迹优化的自动驾驶汽车跟随自行车模型动力学控制(Matlab代码实现)
113 0
|
传感器 编解码 运维
盘一盘!实时自动驾驶车辆定位技术都有哪些?(视觉/Lidar/多传感器数据融合)(上)
与基于激光雷达的定位相比,基于视觉和数据融合的定位技术在提高精度方面的潜力约为2–5倍。基于激光雷达和视觉的定位可以通过提高图像配准方法的效率来降低计算复杂性。与基于激光雷达和视觉的定位相比,基于数据融合的定位可以实现更好的实时性能,因为每个独立传感器不需要开发复杂的算法来实现其最佳定位潜力。V2X技术可以提高定位鲁棒性。最后,讨论了基于定量比较结果的AVs定位的潜在解决方案和未来方向。
盘一盘!实时自动驾驶车辆定位技术都有哪些?(视觉/Lidar/多传感器数据融合)(上)
|
传感器 机器学习/深度学习 编解码
盘一盘!实时自动驾驶车辆定位技术都有哪些?(视觉/Lidar/多传感器数据融合)(下)
与基于激光雷达的定位相比,基于视觉和数据融合的定位技术在提高精度方面的潜力约为2–5倍。基于激光雷达和视觉的定位可以通过提高图像配准方法的效率来降低计算复杂性。与基于激光雷达和视觉的定位相比,基于数据融合的定位可以实现更好的实时性能,因为每个独立传感器不需要开发复杂的算法来实现其最佳定位潜力。V2X技术可以提高定位鲁棒性。最后,讨论了基于定量比较结果的AVs定位的潜在解决方案和未来方向。
盘一盘!实时自动驾驶车辆定位技术都有哪些?(视觉/Lidar/多传感器数据融合)(下)
|
机器学习/深度学习 传感器 存储
一文尽览 | 全景/鱼眼相机低速自动驾驶的近距离感知(识别+重建+定位+工程化)(下)
本文的工作部分受到了Malik等人在[5]中的工作的启发。这项工作的作者提出,计算机视觉的核心问题是重建、识别和重组,他们称之为计算机视觉的3R。在此,论文建议将计算机视觉的3R扩展并专门化为自动驾驶计算机视觉的4R:重建、识别、重组和重新定位。
一文尽览 | 全景/鱼眼相机低速自动驾驶的近距离感知(识别+重建+定位+工程化)(下)
|
传感器 机器学习/深度学习 人工智能
一文尽览 | 全景/鱼眼相机低速自动驾驶的近距离感知(识别+重建+定位+工程化)(上)
本文的工作部分受到了Malik等人在[5]中的工作的启发。这项工作的作者提出,计算机视觉的核心问题是重建、识别和重组,他们称之为计算机视觉的3R。在此,论文建议将计算机视觉的3R扩展并专门化为自动驾驶计算机视觉的4R:重建、识别、重组和重新定位。
一文尽览 | 全景/鱼眼相机低速自动驾驶的近距离感知(识别+重建+定位+工程化)(上)
|
数据采集 人工智能 自动驾驶
自动驾驶高精地图技术的现状和未来
高德技术开放日已经顺利落幕,我们准备了精彩的视频回放。这次放出的是由高德高精地图业务中心 向哲 为大家带来的《自动驾驶高精地图技术的现状和未来》。
292 0
自动驾驶高精地图技术的现状和未来
|
传感器 机器学习/深度学习 人工智能
为什么只用摄像头和光学雷达是不够的:我们能从Uber的自动驾驶车致死事件中学到什么
3 月 18 日星期天晚十点左右,Uber 的一辆自动驾驶 SUV 在美国亚利桑那州坦佩市的街道上造成了一起交通致死事故。坦佩市的警方证实,在事故发生时,该 SUV 处于自动驾驶模式并撞上了一名推着自行车横穿马路的女士。这名女士在医院抢救无效后去世。
255 0
为什么只用摄像头和光学雷达是不够的:我们能从Uber的自动驾驶车致死事件中学到什么
|
传感器 自动驾驶 算法
四维图新:如何利用高精度地图,展开自动驾驶新征程
CES Asia期间,四维图新牵手了德赛西威、亮道智能、Ibeo
1924 0
下一篇
无影云桌面