通过k-means进行图像量化压缩--python实现

简介: image.png逻辑梳理对于电脑来说,每种颜色都会有一个对应RGB值,比如黑色是[0,0,0],白色是[255,255,255],所以RGB模式下,最多可以区分16581375(255的三次方)种颜色。
img_74ca77185efb85af4d9c405d7bd22689.png
image.png

逻辑梳理

  • 对于电脑来说,每种颜色都会有一个对应RGB值,比如黑色是[0,0,0],白色是[255,255,255],所以RGB模式下,最多可以区分16581375(255的三次方)种颜色。
  • 另外我们知道,一张图片的大小与分辨率正相关,但其实也与图片颜色的复杂度是正相关的,相同分辨率的情况下,一张纯色图片是比一张五彩斑斓的图片要小的。
  • 一张分辨率为100*100的图片,其实就是由10000个RGB值组成。所以我们要做的就是对于这10000个RGB值聚类成K个簇,然后使用每个簇内的质心点来替换簇内所有的RGB值,这样在不改变分辨率的情况下使用的颜色减少了,图片大小也就会减小了。

内容

导入包

import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans  #导入kmeans
from sklearn.utils import shuffle
import numpy as np
from skimage import io
import warnings

warnings.filterwarnings('ignore')

图片读取

original = mpl.image.imread('Yosemite 5.jpg') 
width,height,depth = original.shape
temp = original.reshape(width*height,depth)
temp = np.array(temp, dtype=np.float64) / 255

图像读取完我们获取到的其实是一个width*height的三维矩阵(width,height是图片的分辨率)

训练模型

original_sample = shuffle(temp, random_state=0)[:1000] #随机取1000个RGB值作为训练集
def cluster(k):
    estimator = KMeans(n_clusters=k,n_jobs=8,random_state=0)#构造聚类器
    kmeans = estimator.fit(original_sample)#聚类   
    return kmeans

我们只随机取了1000组RGB值作为训练,k表示聚类成 k个簇,对于本文就是K种颜色。

RGB值转化为图像

def recreate_image(codebook, labels, w, h):
    d = codebook.shape[1]
    image = np.zeros((w, h, d))
    label_idx = 0
    for i in range(w):
        for j in range(h):
            image[i][j] = codebook[labels[label_idx]]
            label_idx += 1
    return image

聚类

我们选取了32,64,128三个K值来做比较:

kmeans = cluster(32)
labels = kmeans.predict(temp)
kmeans_32 = recreate_image(kmeans.cluster_centers_, labels,width,height)
kmeans = cluster(64)
labels = kmeans.predict(temp)
kmeans_64 = recreate_image(kmeans.cluster_centers_, labels,width,height)
kmeans = cluster(128)
labels = kmeans.predict(temp)
kmeans_128 = recreate_image(kmeans.cluster_centers_, labels,width,height)

画图并保存

plt.figure(figsize = (15,10))
plt.subplot(2,2,1)
plt.axis('off')
plt.title('Original image')
plt.imshow(original.reshape(width,height,depth))
plt.subplot(2,2,2)
plt.axis('off')
plt.title('Quantized image (128 colors, K-Means)')
plt.imshow(kmeans_128)
io.imsave('kmeans_128.png',kmeans_128)
plt.subplot(2,2,3)
plt.axis('off')
plt.title('Quantized image (64 colors, K-Means)')
plt.imshow(kmeans_64)
io.imsave('kmeans_64.png',kmeans_64)
plt.subplot(2,2,4)
plt.axis('off')
plt.title('Quantized image (32 colors, K-Means)')
plt.imshow(kmeans_32)
io.imsave('kmeans_32.png',kmeans_32)
plt.show()

结果如下:


img_f76344cb0d562dd4dcf83acff3520698.png

差别还是比较明显的,随着颜色变少,图片也越来越马赛克了。


其实对于图片压缩这块,各大互联网公司投入人力优化,在保证图片清晰的情况下,减小文件大小,这样一能为公司节省一大笔带宽费用,二也能让用户更快的加载出图片,提升用户体验。
这篇文章也只是我在学k-means时候看到的一个案例,对于图片压缩只是很小的一部分,写这片文章的时候我也查了下相关的知识,真要下功夫研究,可是一门大学问。
最后:
peace~

目录
相关文章
|
16天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
39 3
|
1月前
|
存储 JSON API
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
52 7
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
|
1月前
|
JSON API 数据格式
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(2)
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(2)
52 0
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(2)
|
1月前
|
Python
Python编程--解压缩文件
Python编程--解压缩文件
|
1月前
|
Python
你知道 Python 如何解压缩数据吗
你知道 Python 如何解压缩数据吗
52 1
|
2月前
|
机器学习/深度学习 搜索推荐 数据可视化
Python量化炒股常用的Matplotlib包
Python量化炒股常用的Matplotlib包
|
2月前
|
数据采集 数据可视化 数据挖掘
Python量化炒股常用的Pandas包
Python量化炒股常用的Pandas包
|
2月前
|
安全 Python
Python量化炒股的获取数据函数—get_industry()
Python量化炒股的获取数据函数—get_industry()
|
2月前
|
Python
Python量化炒股的获取数据函数—get_security_info()
Python量化炒股的获取数据函数—get_security_info()
|
2月前
|
Python
Python量化炒股的获取数据函数— get_billboard_list()
Python量化炒股的获取数据函数— get_billboard_list()
下一篇
无影云桌面