Python大数据:jieba分词,词频统计

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 实验目的学习如何读取一个文件学习如何使用DataFrame学习jieba中文分词组件及停用词处理原理了解Jupyter Notebook概念中文分词在自然语言处理过程中,为了能更好地处理句子,往往需要把句子拆开分成一个一个的词语,这样能更好的分析句子的特性,这个过程叫就叫做分词。

实验目的

  1. 学习如何读取一个文件
  2. 学习如何使用DataFrame
  3. 学习jieba中文分词组件及停用词处理原理
  4. 了解Jupyter Notebook

概念

中文分词

在自然语言处理过程中,为了能更好地处理句子,往往需要把句子拆开分成一个一个的词语,这样能更好的分析句子的特性,这个过程叫就叫做分词。由于中文句子不像英文那样天然自带分隔,并且存在各种各样的词组,从而使中文分词具有一定的难度。

不过,中文分词并不追求完美,而是通过关键字识别技术,抽取句子中最关键的部分,从而达到理解句子的目的。

工具

Jupyter Notebook

Jupyter Notebook是一个交互式的笔记本工具,重点有两点
- “交互式” 让你随时随时运行并暂存结果,
- “笔记本” 记录你的研究过程

想象一下,在这之前你是如何使用Python的?

  • 用一切可能的文本编辑工具编写代码
  • 然后运行python xxx.py调试
  • 当你写了一个9W条数据的处理程序之后,跑到一半报个错,又得重头开始
  • 画图基本靠脑补

有了JN之后,你可以:

  • 直接在网页上编写代码
  • 按Shift + Enter立即执行当前Cell的代码段
  • Cell执行后的变量仍然生存,可以在下一个Cell继续使用,所以,我用第一个Cell加载9W条数据,第二个Cell开始预处理,第三个Cell进行运算等等
  • 直接在网页上画出图片,即时调整参数Shift+Enter预览,麻麻再也不用担心我写错代码,美滋滋 ~~~

jieba

jieba模块安装请参见官方说明

jieba 是一个python实现的中文分词组件,在中文分词界非常出名,支持简、繁体中文,高级用户还可以加入自定义词典以提高分词的准确率。

它支持三种分词模式

  • 精确模式:试图将句子最精确地切开,适合文本分析;
  • 全模式:把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
  • 搜索引擎模式:在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。

另外它还自带有关键词摘取算法。

  • 基于 TF-IDF 算法的关键词抽取
  • 基于 TextRank 算法的关键词抽取

pandas

pandas 是基于NumPy 的大数据处理工具,基本数据结构有(二维表)DataFrame,(一维数组)Series。

本次实验中,我们主要使用pandas的DataFrame,加载、保存csv数据源,处理数组进行去重、统计。

数据

实验数据为百度随意打开的新闻,请读者自行按下表格式准备

id title content
1 文章标题 文章内容
2 文章标题 文章内容
3 文章标题 文章内容
img_54aec3ab3d173d1cb594a3ab0fcfcdf8.png
本文使用的数据截图

思路(伪代码)

  1. 读取数据源
  2. 加载停用词库
  3. 循环对每一篇文章进行分词
    • 普通分词,需要手工进行停用词过滤
    • TF-IDF关键词抽取,需要使用停用词库
    • textrank关键词抽取,只取指定词性的关键词
  4. 对结果进行词频统计
  5. 输出结果到csv文件

实验代码

第一行将代码标记为utf-8编码,避免出现处理非ascii字符时的错误

# -*- coding: UTF-8 -*-

载入需要用到的模块,as是给模块取个别名,输入的时候不用输那么长的单词。

嗯,反正你别问我为什么不给jieba取别名

import numpy as np
import pandas as pd
import jieba
import jieba.analyse
import codecs

默认情况下,pd显示的文本长度为50,超出部分显示为省略号,我们修改一下,以方便观察数据(文章内容)

#设置pd的显示长度
pd.set_option('max_colwidth',500)

读取我们的实验数据,将所有列设置为string,编码指定utf-8,第一行为列头

#载入数据
rows=pd.read_csv('datas1.csv', header=0,encoding='utf-8',dtype=str)

我们直接在下一个Cell中输入变量rows,观察载入的结果

img_6e85a060711fd6a0accaf6b001262b53.png
加载后的数据

对于普通分词,我们需要将停用词载入到一个数组中,在分词后逐一比较关键词是否为停用词

stopwords = [line.strip() for line in codecs.open('stoped.txt', 'r', 'utf-8').readlines()] 

对于TF-IDF,我们只需要告诉组件停用词库,它将自己载入词库并使用它

#载入停用词
jieba.analyse.set_stop_words('stoped.txt')

接下来我们就要对所有文章进行分词了,先声明一个数组,用于保存分词后的关键字,此数组每行保存一个关键字对象。

关键字对象有两个属性:

  • word: 关键字本身
  • count : 永远为1,用于后面统计词频
# 保存全局分词,用于词频统计
segments = []

普通分词及停用词判断

for index, row in rows.iterrows():
    content = row[2]
    #TextRank 关键词抽取,只获取固定词性
    words = jieba.cut(content)
    splitedStr = ''
    for word in words:
        #停用词判断,如果当前的关键词不在停用词库中才进行记录
        if word not in stopwords:
            # 记录全局分词
            segments.append({'word':word, 'count':1})
            splitedStr += word + ' '

Text Rank 关键词抽取

for index, row in rows.iterrows():
    content = row[2]
    #TextRank 关键词抽取,只获取固定词性
    words = jieba.analyse.textrank(content, topK=20,withWeight=False,allowPOS=('ns', 'n', 'vn', 'v'))
    splitedStr = ''
    for word in words:
        # 记录全局分词
        segments.append({'word':word, 'count':1})
        splitedStr += word + ' '

观察分词后的关键字,发现全是utf-8编码后的文字,暂时不管,我们先将这个数组转换为DataFrame对象,调用groupby方法和sum方法进行统计汇总。

# 将结果数组转为df序列
dfSg = pd.DataFrame(segments)

# 词频统计
dfWord = dfSg.groupby('word')['count'].sum()

输出结果

#导出csv
dfWord.to_csv('keywords.csv',encoding='utf-8')
img_87094c36e1fa858dd3906fd7d5ebd0c1.png
导出的数据结果

完整代码

# -*- coding: UTF-8 -*-
import numpy as np
import pandas as pd
import jieba
import jieba.analyse
import codecs

#设置pd的显示长度
pd.set_option('max_colwidth',500)

#载入数据
rows=pd.read_csv('datas1.csv', header=0,encoding='utf-8',dtype=str)

segments = []
for index, row in rows.iterrows():
    content = row[2]
    #TextRank 关键词抽取,只获取固定词性
    words = jieba.analyse.textrank(content, topK=50,withWeight=False,allowPOS=('ns', 'n', 'vn', 'v'))
    splitedStr = ''
    for word in words:
        # 记录全局分词
        segments.append({'word':word, 'count':1})
        splitedStr += word + ' '
dfSg = pd.DataFrame(segments)

# 词频统计
dfWord = dfSg.groupby('word')['count'].sum()
#导出csv
dfWord.to_csv('keywords.csv',encoding='utf-8')

总结

分词算法

本次实验,我们学习了如何使用jieba模块进行中文分词与关键字提取,结果各有千秋:

  • 普通分词:需要手工过滤停用词、无意义词、电话号码、符号等,但能较为全面的保留所有关键字。
  • TF-IDF:停用词过滤有限,也需要手工处理部分数字、符号;它通过词频抽取关键字,对同一篇文章的词频统计不具有统计意义,多用于宏观上的观测。
  • Text Rank: 大概效果同TF-IDF,通过限定词性过滤无关字符,能得到较为工整的关键字结果。

结论

总之,我们应根据我们的目标去选择适当的分词方法。

  • 对某一篇文章进行关键字Map,我们选择普通分词,并自行过滤关键词,或添加自定义词库。
  • 对采集的一批样本进行关键字分析,我们可以选择TF-IDF,对所有的关键字进行词频统计,并绘制出关键字云图。
  • 如果我们要分析一批样本中用户的分类,用户的行为,用户的目的,我们可以选择TextRank抽取指定词性的关键字进行统计分析。

引用

jieba 开源仓库 https://github.com/fxsjy/jieba

下期预告

Python大数据:商品评论的情感倾向分析

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
1月前
|
数据可视化 搜索推荐 大数据
基于python大数据的北京旅游可视化及分析系统
本文深入探讨智慧旅游系统的背景、意义及研究现状,分析其在旅游业中的作用与发展潜力,介绍平台架构、技术创新、数据挖掘与服务优化等核心内容,并展示系统实现界面。
|
28天前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
1月前
|
数据采集 数据可视化 安全
基于python大数据的天气可视化分析预测系统
本研究探讨基于Python的天气预报数据可视化系统,旨在提升天气数据获取、分析与展示的效率与准确性。通过网络爬虫技术快速抓取实时天气数据,并运用数据可视化技术直观呈现天气变化趋势,为公众出行、农业生产及灾害预警提供科学支持,具有重要的现实意义与应用价值。
|
1月前
|
数据可视化 数据挖掘 大数据
基于python大数据的水文数据分析可视化系统
本研究针对水文数据分析中的整合难、分析单一和可视化不足等问题,提出构建基于Python的水文数据分析可视化系统。通过整合多源数据,结合大数据、云计算与人工智能技术,实现水文数据的高效处理、深度挖掘与直观展示,为水资源管理、防洪减灾和生态保护提供科学决策支持,具有重要的应用价值和社会意义。
|
1月前
|
数据采集 数据可视化 数据挖掘
基于python大数据的nba球员可视化分析系统
本课题围绕NBA球员数据分析与可视化展开,探讨如何利用大数据与可视化技术提升篮球运动的表现评估与决策支持能力。研究涵盖数据采集、处理与可视化呈现,结合SQLite、Flask、Echarts等技术构建分析系统,助力球队训练、战术制定及球迷观赛体验提升。
|
1月前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。
|
1月前
|
机器学习/深度学习 搜索推荐 算法
基于python大数据的口红商品分析与推荐系统
本研究基于Python大数据技术,构建口红商品分析与推荐系统,旨在解决口红市场产品同质化与消费者选择困难问题。通过分析颜色、质地、价格等多维度数据及用户行为,实现个性化推荐,提升购物体验与品牌营销效率,推动美妆行业数字化转型,具有重要现实意义与市场价值。
|
机器学习/深度学习 人工智能 大数据
AI时代Python金融大数据分析实战:ChatGPT让金融大数据分析插上翅膀
AI时代Python金融大数据分析实战:ChatGPT让金融大数据分析插上翅膀
569 6
|
Web App开发 SQL Python
书籍:Python金融大数据分析 Python for Finance_ Mastering Data-Driven Finance 2nd - 2019.pdf
简介 金融业最近以极高的速度采用了Python,一些最大的投资银行和对冲基金使用它来构建核心交易和风险管理系统。 针对Python 3进行了更新,本手册的第二版帮助您开始使用该语言,指导开发人员和定量分析师通过Python库和工具构建财务应用程序和交互式财务分析。
|
Python
《Python金融大数据分析》一导读
不久以前,在金融行业,Python作为一种编程语言和平台技术还被视为异端。相比之下,2014年有许多大型金融机构——如美国银行、美林证券的“石英”项目或者摩根大通的“雅典娜”项目——战略性地使用了Python和其他既定的技术,构建、改进和维护其核心IT系统。
2582 0

热门文章

最新文章

推荐镜像

更多