数据结构与算法「鱼C笔记一,谈谈算法,时间复杂度」

简介: 数据结构与算法「鱼C笔记一,谈谈算法,时间复杂度」教程参考自小甲鱼数据结构与算法视频,是个很不错的视频,感谢小甲鱼的付出相关代码已经上传到仓库的arithmetics文件夹为什么要学习算法因为好的算法可以提高程序的运行效率,我们从运行效率的方面来举例,1加到100。

数据结构与算法「鱼C笔记一,谈谈算法,时间复杂度」

教程参考自小甲鱼数据结构与算法视频,是个很不错的视频,感谢小甲鱼的付出

相关代码已经上传到仓库的arithmetics文件夹

为什么要学习算法

因为好的算法可以提高程序的运行效率,我们从运行效率的方面来举例,1加到100。案例使用的是Kotlin语言

1)不使用算法

我们不使用算法优化,直接用for循环进行相加

fun main(args: Array<String>) {
    var sum: Int = 0//总数
    for (i in 1..100) {//遍历,从1加到100
        sum + =i//sum和i相加
    }
    println("$sum")//输出
}

我们来看看执行次数

fun main(args: Array<String>) {
    var sum: Int = 0//执行1次
    for (i in 1..100) {
        sum += i//执行了100次
    }
    println("$sum")//输出
}

在for循环里面,执行了100次

2)使用算法

这里我们使用高斯算法

fun main(args: Array<String>) {
    var sum: Int = 0//执行1次
    val n = 100//执行1次
    sum = (1 + n) * n / 2//执行1次
    println("$sum")//执行1次
}

原本需要执行100次的任务,被我们1次就解决了

3)结论

当然,如果仅仅是这个案例,其实你觉得运行时间是差不多。我们稍微修改下代码,拿出证据。

fun main(args: Array<String>) {
    //普通循环
    val startTime = System.currentTimeMillis()   //获取开始时间毫秒值
    var sum = 0L//总数
    for (i in 1..1000000000) {//遍历,从1加到10亿
        sum += i//sum和i相加
    }
    println("$sum")//执行1次
    val endTime = System.currentTimeMillis() //获取结束时间毫秒值
    System.out.println("程序运行时间: " + (endTime - startTime) + "ms")
}

我们获取开始时间,结束时间,算出程序运行的时间。运行结果未使用高斯算法的程序运行时间为: 542毫秒。

fun main(args: Array<String>) {
    //使用高斯算法
    val startTime = System.currentTimeMillis()   //获取开始时间
    var sum= 0L//执行1次
    val n = 1000000000000//执行1次
    sum = (1 + n) * n / 2//执行1次
    println("$sum")//执行1次
    val endTime = System.currentTimeMillis() //获取结束时间
    System.out.println("程序运行时间: " + (endTime - startTime) + "ms")
}

运行使用了高斯算法的程序运行时间为:1毫秒

结论是使用算法确实能让我们的程序提高运行效率

时间复杂度

一,大O计法

我们用时间复杂度来评估程序运行时间的需求,如上小节的程序运行时间。

上小节为证明算法价值测试了程序运行时间,但是很多时候我们是要把算法先设计好,才开始写代码。这也符合我们的正常思维,毕竟只有设计时觉得是个好算法你才会去把它写出来嘛。

这也就是我们说的事前分析估算方法

1)常数阶

我们用一种叫做大O计法来度量算法的时间优劣,大O计法使用了程序的执行次数来衡量程序的运行时间。

fun main(args: Array<String>) {
    //输入字符串变量
    val n = readLine()//执行一次
    /**
     * 1,常数阶
     * 将输入字符串n通过toInt方法转化为Int类型
     * 而后面的?:1看起来是三元运算符,其实不是的,这是Kotlin的ELvis操作符。
     * 它的作用是当检测到n变量的值为空时,使用默认值1
     */
    a(n?.toInt() ?: 1)
}

fun a(n: Int) {
    println("$n")//执行1次
}

在该程序中,我们整个程序只执行了两次,一次是在输入字符串变量时,一次是在输出变量时。那么这样的算法程序,我们可以称它的时间复杂度为O(1)。

这种执行次数不会随着输入规模增长的算法我们称为常量阶。

输入规模 1 100 1000 10000
执行次数 2 2 2 2

那为什么明明是执行了两次,却称它的的时间复杂度是O(1)呢?因为在大O计数法里,常量阶不管执行多少次,都是写作1,比如

fun b(i: Int) {
    println("$i")
    println("$i")
    println("$i")
    println("$i")
    println("$i")
    println("$i")
    println("$i")
    println("$i")
}

在这段程序中,虽然我们输出了8次,但是使用大O计法仍然是O(1)。

这个可以先记着,后面我们与线性阶,平方阶对比时会讲解为什么这样,其实就是大O计法里面有一个思想,忽略少数的误差,有点像是高中物理测试时的忽略误差。

当n变得很大,很大的时候,常数阶因为执行次数并不会增长,和其他会随着输入规模的增长而变大的阶对比来说,实在太小了,就近似看成是1

常量阶的计法永远是O(1)

2)线性阶

线性阶其实就是我们的一元一次函数,y=kx+b

/**
 * 线性阶
 */
fun main(args: Array<String>) {
    //输入字符串变量
    val n = readLine()//执行次数为1
    /**
     * 1,线性阶
     * 将字符串n通过toInt方法转化为Int类型
     * 而后面的?:1看起来是三元运算符,其实不是的,这是Kotlin的ELvis操作符。
     * 它的作用是当检测到n变量的值为空时,使用默认值1
     */
    c(n?.toInt() ?: 1)//常量阶1
}

fun c(n: Int) {
    //循环,从1到n
    for (i in 1..n) {
        println(i)//执行次数是1
    }
}
输入规模 1 100 1000 10000
执行次数 2 101 1001 10001

在这个函数中,输出执行次数为1n,输入执行次数为1,我们会下意识得以为计法是O(1n+1)。

还记得之前说过忽略吗,我们可以通过高中数学知识来帮助记忆,我们把线性阶看成是一元一次函数,y=kx+b,x是我们的输入规模,y为执行次数,kb为常数,在大O技数法中,kb不管多少,都是忽略b,把k看做1。我们的程序可以看做是y=1n+1,最后的计法是O(n)。

/**
 * 线性阶
 */
fun main(args: Array<String>) {
    //输入字符串变量,这里相当于y=kx+b的b
    val n = readLine()
    val n2 = readLine()
    val n3 = readLine()
    val n4 = readLine()
    /**
     * 1,线性阶
     * 将字符串n通过toInt方法转化为Int类型
     * 而后面的?:1看起来是三元运算符,其实不是的,这是Kotlin的ELvis操作符。
     * 它的作用是当检测到n变量的值为空时,使用默认值1
     */
    d(n?.toInt() ?: 1)//常量阶1
}

fun d(n: Int) {
    //循环,从1到n,这里的n相当于1元一次函数的y=kx+b的x
    for (i in 1..n) {
        //这里的输出次数相当于1元一次函数y=kx+b的k
        println(i)//执行次数是1
        println(i)//执行次数是1
        println(i)//执行次数是1
        println(i)//执行次数是1
        println(i)//执行次数是1
        println(i)//执行次数是1
    }
}

还是用以上程序作为例子,y=6x+4,但是由于b要被忽略,k看做是,所以简化后还是y=x,记作时间复杂度为O(n)的算法

线性阶的计法永远是O(n)

3)平方阶

平方阶类似我们的一元二次方程,y=kx^2+bx+c

/**
 * 平方阶
 */
fun main(args: Array<String>) {
    //输入字符串变量
    val n = readLine()//执行了一次
    /**
     * 1,常数阶
     * 将字符串n通过toInt方法转化为Int类型
     * 而后面的?:1看起来是三元运算符,其实不是的,这是Kotlin的ELvis操作符。
     * 它的作用是当检测到n变量的值为空时,使用默认值1
     */
    a(n?.toInt() ?: 1)//常量阶1

}

fun a(n: Int) {
    for (i in 1..n) {
        for (j in 1..n) {
            println("$i,$j")//执行了n*n次
        }
    }
}

可以看做y=x2+1,记做O(n2),忽略输入次数c

执行次数函数 记作 用语 解释
13 O(1) 常数阶 常数阶不管执行次数多少,都看做1
2n+3 O(n) 线性阶 线性阶可以看做y=kx+b,永远忽略b,k记做1
3n^2+2n+1 O(n^2) 平方阶 平方阶看做y=kx^n+bx+c,忽略bx+c,k记做1
目录
相关文章
|
9天前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
42 9
 算法系列之数据结构-二叉树
|
7天前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
30 3
 算法系列之数据结构-Huffman树
|
9天前
|
算法 Java
算法系列之数据结构-二叉搜索树
二叉查找树(Binary Search Tree,简称BST)是一种常用的数据结构,它能够高效地进行查找、插入和删除操作。二叉查找树的特点是,对于树中的每个节点,其左子树中的所有节点都小于该节点,而右子树中的所有节点都大于该节点。
54 22
|
1月前
|
存储 机器学习/深度学习 算法
C 408—《数据结构》算法题基础篇—链表(下)
408考研——《数据结构》算法题基础篇之链表(下)。
94 29
|
1月前
|
存储 算法 C语言
C 408—《数据结构》算法题基础篇—链表(上)
408考研——《数据结构》算法题基础篇之链表(上)。
107 25
|
1月前
|
存储 人工智能 算法
C 408—《数据结构》算法题基础篇—数组(通俗易懂)
408考研——《数据结构》算法题基础篇之数组。(408算法题的入门)
77 23
|
3月前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
87 20
|
2月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
61 2
|
5天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
|
4天前
|
资源调度 算法 数据可视化
基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF
本项目基于MATLAB2022A实现IEKF迭代扩展卡尔曼滤波算法的数据跟踪仿真,对比EKF和UKF的性能。通过仿真输出误差收敛曲线和误差协方差收敛曲线,展示三种滤波器的精度差异。核心程序包括数据处理、误差计算及可视化展示。IEKF通过多次迭代线性化过程,增强非线性处理能力;UKF避免线性化,使用sigma点直接处理非线性问题;EKF则通过一次线性化简化处理。