Java源码阅读之ArrayList - JDK1.8

简介: 阅读优秀的源码是提升编程技巧的重要手段之一。如有不对的地方,欢迎指正~转载请注明出处https://blog.lzoro.com。前言当你对某件事情很感兴趣的时候,时间的流逝在感知中都模糊了(是不是很文艺,绕口得都快听不懂了),通俗来说,就是时间过得很快。

阅读优秀的源码是提升编程技巧的重要手段之一。
如有不对的地方,欢迎指正~
转载请注明出处https://blog.lzoro.com

前言

当你对某件事情很感兴趣的时候,时间的流逝在感知中都模糊了(是不是很文艺,绕口得都快听不懂了),通俗来说,就是时间过得很快。

而且,只有感兴趣才能驱动你继续下去,不然读源码,写解析博客这么高(Ku)大(Zao)上的事,是很难坚持的。

详细地写一篇源码解析博客少则半天一天,比如本篇,多则几天,比如红黑树在Java - HashMap中的应用,又要画图又要注释,还要排版,时不时要加点表情,开个车什么的,你说要是没兴趣,怎么坚持呢,还不如吃个鸡实在(啊,暴露了我是吃鸡选手)。

image

闲话少说,打开你的IDE,挽起袖子,开撸代码,加上注释,总计1461行代码。

基本介绍

常量

相比HashMap来说,ArrayList的常量算是短小精悍了,只有几个。

其中包含一个默认容量和两个空数组等,如下。

 /**
 * 默认初始化容量
 */
private static final int DEFAULT_CAPACITY = 10;

/**
 * 空数组共享实例
 */
private static final Object[] EMPTY_ELEMENTDATA = {};

/**
 * 缺省大小的空数组共享实例
 * 与 EMPTY_ELEMENTDATA 区分开来,以便知道第一个元素添加时如何扩容
 */
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};

/**
 * 最大可分配大小
 */
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

成员变量

成员变量也是简单到令人发指,一个负责实际存储的缓冲数组和一个表示大小的变量。

/**
 * 实际负责存储的缓冲数组
 * ArrayList的容量就是缓冲数组的长度
 * 
 * 空的ArrayList(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)在第一个元素添加时将会以默认容量扩容
 */
transient Object[] elementData; // 非私有,以简化嵌套类的访问

/**
 * 大小
 */
private int size;

构造函数

三个构造函数,分别是利用默认初始容量/给定初始容量/给定特定集合来构造ArrayList。

/**
 * 根据给定初始容量构造一个空的list
 *
 * @param  initialCapacity  list的初始容量
 * @throws IllegalArgumentException 当给定的初始容量非负时抛异常
 */
public ArrayList(int initialCapacity) {
    //判断给定初始化容量是否合法
    if (initialCapacity > 0) {
        //创建数组
        this.elementData = new Object[initialCapacity];
    } else if (initialCapacity == 0) {
        this.elementData = EMPTY_ELEMENTDATA;
    } else {
        throw new IllegalArgumentException("Illegal Capacity: "+
                                           initialCapacity);
    }
}

/**
 * 按默认初始容量(10)构造一个空的list
 */
public ArrayList() {
    this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}

/**
 * 根据给定集合构造一个list,将按集合迭代的顺序存储
 *
 * @param c 集合
 * @throws NullPointerException  集合为null时抛异常
 */
public ArrayList(Collection<? extends E> c) {
    //集合转数组后赋值给缓冲数组
    elementData = c.toArray();
    //判断大小
    if ((size = elementData.length) != 0) {
        // c.toArray might (incorrectly) not return Object[] (see 6260652)
        //c.toArray方法可能不会返回Object[]形式的数组
        //下面做一层判断
        if (elementData.getClass() != Object[].class)
            //做拷贝操作
            elementData = Arrays.copyOf(elementData, size, Object[].class);
    } else {
        //如果是空集合,则替换成共享空数组实例
        // replace with empty array.
        this.elementData = EMPTY_ELEMENTDATA;
    }
}

功能

看完了基本介绍,应该会觉得Just so so。

接下来就要逐一介绍各个功能的具体实现了。

ArrayList中,我们常用的功能有add/remove/get等。

无外乎增删改查,下面一一介绍~

add

在ArrayList中,添加操作还分为几种

  • 从尾部添加元素
  • 指定位置添加元素
  • 从尾部添加集合
  • 从指定位置添加集合
/**
 * 从尾部添加指定元素
 *
 * @param e 元素
 * @return <tt>true</tt> (as specified by {@link Collection#add})
 */
public boolean add(E e) {
    //确保内部容量,有一系统调用链但不复杂,下面分析
    ensureCapacityInternal(size + 1);  // Increments modCount!!
    //存储元素
    elementData[size++] = e;
    return true;
}

/**
 * 在指定位置插入元素
 *  移动当前位置的元素 (如果存在) 和后继元素到右边
 *
 * @param index index at which the specified element is to be inserted
 * @param element element to be inserted
 * @throws IndexOutOfBoundsException {@inheritDoc}
 */
public void add(int index, E element) {
    //判断边界,可能会产生数组越界
    rangeCheckForAdd(index);
    //确保内部容量,同上
    ensureCapacityInternal(size + 1);  // Increments modCount!!
    //调用效率较高的System.arraycopy进行数组复制
    //目的是为了空出指定位置
    System.arraycopy(elementData, index, elementData, index + 1,
                     size - index);
    //指定位置上放入指定元素
    elementData[index] = element;
    //容量+1
    size++;
}

在添加的元素的时候,有一个关键方法ensureCapacityInternal是来确保内部缓存数组的容量,当容量不够时进行扩容,下面具体看下这个方法的调用链

/**
 * 私有方法
 */
private void ensureCapacityInternal(int minCapacity) {
    //判断是否是默认空实例,如果是的话,计算扩容容量
    if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
        minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
    }
    //调用ensureExplicitCapacity
    ensureExplicitCapacity(minCapacity);
}

...

private void ensureExplicitCapacity(int minCapacity) {
    //操作计算+1
    modCount++;
    
    // overflow-conscious code
    //只有当容量不够时才扩容
    if (minCapacity - elementData.length > 0)
        grow(minCapacity);
}

/**
 * 缓冲数组扩容以确保能够存储给定元素
 *
 * @param minCapacity 期望的最小容量
 */
private void grow(int minCapacity) {
    // overflow-conscious code
    //现有元素长度
    int oldCapacity = elementData.length;
    //新容量为 旧容量 + 旧容量的一半
    //如 10 + 5 = 15
    int newCapacity = oldCapacity + (oldCapacity >> 1);
    //如果计算的新容量比期望的最小容量小,则采用期望的最小容量作为扩容参数
    if (newCapacity - minCapacity < 0)
        newCapacity = minCapacity;
    //判断是否超过最大数组容量
    if (newCapacity - MAX_ARRAY_SIZE > 0)
        newCapacity = hugeCapacity(minCapacity);
    // minCapacity is usually close to size, so this is a win:
    //最小扩容容量通常是接近size的,所以这是一场胜利
    //这么臭美的吗
    elementData = Arrays.copyOf(elementData, newCapacity);
}

/**
 * 取得最大容量
 */
private static int hugeCapacity(int minCapacity) {
    //溢出
    if (minCapacity < 0) // overflow
        throw new OutOfMemoryError();
    //取最大容量
    return (minCapacity > MAX_ARRAY_SIZE) ?
        Integer.MAX_VALUE :
        MAX_ARRAY_SIZE;
}

set

这里的set其实可以理解为修改,将指定位置的元素替换为新元素。

/**
 * 修改指定位置的元素
 *
 * @param index index of the element to replace
 * @param element element to be stored at the specified position
 * @return the element previously at the specified position
 * @throws IndexOutOfBoundsException {@inheritDoc}
 */
public E set(int index, E element) {
    //范围检查
    rangeCheck(index);
    //取出旧值用以返回
    E oldValue = elementData(index);
    //放入新的值
    elementData[index] = element;
    return oldValue;
}

remove

数组的移除和添加一样,也分为几种方式

  • 根据下标移除
  • 根据对象移除
  • 根据集合移除
  • 根据过滤器移除
  • 根据范围移除(受保护的方法)
/**
 * 删除指定位置的元素,后继元素左移(前移)
 *
 * @param index 下标
 * @return the 被移除的元素
 * @throws IndexOutOfBoundsException {@inheritDoc}
 */
public E remove(int index) {
    //下标检查
    rangeCheck(index);
    //操作计数 + 1
    modCount++;
    //获取指定位置的元素(用以返回)
    E oldValue = elementData(index);

    int numMoved = size - index - 1;
    //用system.arraycopy的方式移动元素
    //相当于是index位置后的元素前移
    if (numMoved > 0)
        System.arraycopy(elementData, index+1, elementData, index,
                         numMoved);
    //最后一个数组元素引用置为null,方便GC
    elementData[--size] = null; // clear to let GC do its work
    //返回
    return oldValue;
}


/**
 * 当元素存在的时候,删除第一个找到的指定元素
 * 
 * 如果元素不存在,则list不会变动
 *
 * @param o element to be removed from this list, if present
 * @return <tt>true</tt> if this list contained the specified element
 */
public boolean remove(Object o) {
    //o是否是null元素(数组允许存储null)
    if (o == null) {
        for (int index = 0; index < size; index++)
            if (elementData[index] == null) {
                //调用内部的fastRemove方法,后面分析
                fastRemove(index);
                return true;
            }
    } else {
        for (int index = 0; index < size; index++)
            //这里跟上面不一样的是,是用equals来比较,而不是比较地址
            if (o.equals(elementData[index])) {
                //同上
                fastRemove(index);
                return true;
            }
    }
    return false;
}

/**
 * 根据给定的集合,将list中与集合相同的元素全部删除
 *
 * @param c collection containing elements to be removed from this list
 * @return {@code true} if this list changed as a result of the call
 * @throws ClassCastException if the class of an element of this list
 *         is incompatible with the specified collection
 * (<a href="Collection.html#optional-restrictions">optional</a>)
 * @throws NullPointerException if this list contains a null element and the
 *         specified collection does not permit null elements
 * (<a href="Collection.html#optional-restrictions">optional</a>),
 *         or if the specified collection is null
 * @see Collection#contains(Object)
 */
public boolean removeAll(Collection<?> c) {
    Objects.requireNonNull(c);
    //调用批量删除,后续分析
    return batchRemove(c, false);
}


/**
 * 通过一个过滤器接口实现,来实现删除
 */
@Override
public boolean removeIf(Predicate<? super E> filter) {
    Objects.requireNonNull(filter);
    // figure out which elements are to be removed
    // any exception thrown from the filter predicate at this stage
    // will leave the collection unmodified
    int removeCount = 0;
    //用bitset来存储哪些下标对应的元素要删除,哪些下标对应的元素要保存
    //这里不清楚BitSet的用法的,可以先行了解一下
    final BitSet removeSet = new BitSet(size);
    //判断并发修改用
    final int expectedModCount = modCount;
    final int size = this.size;
    //按顺序遍历且没有并发修改
    for (int i=0; modCount == expectedModCount && i < size; i++) {
        @SuppressWarnings("unchecked")
        final E element = (E) elementData[i];
        //利用过滤器匹配元素,如果匹配,则删除计数+1,并将下标进行存储
        if (filter.test(element)) {
            removeSet.set(i);
            removeCount++;
        }
    }
    //判断是否存在并发修改
    if (modCount != expectedModCount) {
        //抛出并发修改异常
        throw new ConcurrentModificationException();
    }

    // shift surviving elements left over the spaces left by removed elements
    //判断是否有要删除的元素
    final boolean anyToRemove = removeCount > 0;
    if (anyToRemove) {
        final int newSize = size - removeCount;
        for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
            //下一个要保存的元素
            i = removeSet.nextClearBit(i);
            //存放到新数组
            elementData[j] = elementData[i];
        }
        //把实际要保存的元素之后的全部置为null,用以GC
        //实际上,上面的操作已经将要保留的元素全部前移了,后面的元素都是不保留的,所以要置为null来帮助gc
        for (int k=newSize; k < size; k++) {
            elementData[k] = null;  // Let gc do its work
        }
        //设置size
        this.size = newSize;
        //判断是否并发修改
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
        modCount++;
    }

    return anyToRemove;
}


/**
 * 删除list中指定范围的元素
 * 
 * Shifts any succeeding elements to the left (reduces their index).
 * This call shortens the list by {@code (toIndex - fromIndex)} elements.
 * (If {@code toIndex==fromIndex}, this operation has no effect.)
 *
 * @throws IndexOutOfBoundsException if {@code fromIndex} or
 *         {@code toIndex} is out of range
 *         ({@code fromIndex < 0 ||
 *          fromIndex >= size() ||
 *          toIndex > size() ||
 *          toIndex < fromIndex})
 */
protected void removeRange(int fromIndex, int toIndex) {
    modCount++;
    //范围删除时,其实数组被分成三个部分
    //分别为[保留区 - 删除区 - 保留区]
    //实际操作,则是计算出最后那部分保留区的长度
    //利用arraycopy拷贝到第一个保留区的后面
    //然后置空多余部分,帮助GC
    int numMoved = size - toIndex;
    System.arraycopy(elementData, toIndex, elementData, fromIndex,
                     numMoved);

    // clear to let GC do its work
    int newSize = size - (toIndex-fromIndex);
    for (int i = newSize; i < size; i++) {
        elementData[i] = null;
    }
    size = newSize;
}

//最后,来看一下批量删除这个私有方法

/**
 * 批量删除
 */
private boolean batchRemove(Collection<?> c, boolean complement) {
    final Object[] elementData = this.elementData;
    int r = 0, w = 0;
    boolean modified = false;
    try {
        for (; r < size; r++)
            //这里其实有可能抛异常的
            //complement
            //为false时,则证明下标r的元素不在删除集合c中,所以这个时候存储的是不删除的元素

            //为true时,则证明下标r的元素在删除集合c中,所以这个时候存储的是要删除的元素
            
            //这个布尔值的设计很巧妙。所以本方法可以供removeAll、retainAll两个方法来调用
            if (c.contains(elementData[r]) == complement)
                elementData[w++] = elementData[r];
    } finally {
        // Preserve behavioral compatibility with AbstractCollection,
        // even if c.contains() throws.
        //所以这里要实际进行判断循环是否正常
        if (r != size) {
            //如果不正常的话,需要挪动元素
            System.arraycopy(elementData, r,
                             elementData, w,
                             size - r);
            w += size - r;
        }
        //如果有需要删除的元素的话,则证明有一部分位置需要只为null,来帮助GC
        //并且设置是否有修改的标志为true
        if (w != size) {
            // clear to let GC do its work
            for (int i = w; i < size; i++)
                elementData[i] = null;
            modCount += size - w;
            size = w;
            modified = true;
        }
    }
    return modified;
}

至此,删除相关的方法都已经分析完毕。

有几个比较有意思的应用

  • BitSet 标志哪些下标要删除,哪些不删除
  • batchRemove 方法中的布尔值很巧妙

get

作为数组型的list,获取方法时比较简单的,只需要根据给定下标,读取指定下标的数组元素即可。

public E get(int index) {
    //范围检查
    rangeCheck(index);

    return elementData(index);
}

contains

当前list是否包含指定元素

/**
 * 返回布尔值表示是否包含
 */
public boolean contains(Object o) {
    //实际上是判断下标是否存在
    return indexOf(o) >= 0;
}

/**
 * 指定元素在list中首次出现的下标,不存在则返回-1
 */
public int indexOf(Object o) {
    //通过遍历的方式查找
    if (o == null) {
        for (int i = 0; i < size; i++)
            if (elementData[i]==null)
                return i;
    } else {
        for (int i = 0; i < size; i++)
            if (o.equals(elementData[i]))
                return i;
    }
    return -1;
}

//另外,还有一个,最后一次出现的下标

public int lastIndexOf(Object o) {
    //跟上面的类似,只不过遍历方式是从尾部开始
    if (o == null) {
        for (int i = size-1; i >= 0; i--)
            if (elementData[i]==null)
                return i;
    } else {
        for (int i = size-1; i >= 0; i--)
            if (o.equals(elementData[i]))
                return i;
    }
    return -1;
}

clear

清空缓冲数组。

public void clear() {
    //修改计数 + 1
    modCount++;

    // clear to let GC do its work
    //全部置为null,帮助GC
    for (int i = 0; i < size; i++)
        elementData[i] = null;
    //size设置为0
    size = 0;
}

以上相关方法基本都已经介绍完毕。

总结

Array相比其他集合框架,如Map、Set之类的,还是比较简单的。

只需要了解相关方法的应用和原理,注意下标越界问题,以及内部的缓冲数组是如何扩容的,基本上就OK了。

溜了溜了。有帮助的话给格子点个赞呗~3Q

我的博客即将入驻“云栖社区”,诚邀技术同仁一同入驻。

目录
相关文章
|
15天前
|
Java 索引 容器
Java ArrayList扩容的原理
Java 的 `ArrayList` 是基于数组实现的动态集合。初始时,`ArrayList` 底层创建一个空数组 `elementData`,并设置 `size` 为 0。当首次添加元素时,会调用 `grow` 方法将数组扩容至默认容量 10。之后每次添加元素时,如果当前数组已满,则会再次调用 `grow` 方法进行扩容。扩容规则为:首次扩容至 10,后续扩容至原数组长度的 1.5 倍或根据实际需求扩容。例如,当需要一次性添加 100 个元素时,会直接扩容至 110 而不是 15。
Java ArrayList扩容的原理
|
7天前
|
IDE Java 编译器
开发 Java 程序一定要安装 JDK 吗
开发Java程序通常需要安装JDK(Java Development Kit),因为它包含了编译、运行和调试Java程序所需的各种工具和环境。不过,某些集成开发环境(IDE)可能内置了JDK,或可使用在线Java编辑器,无需单独安装。
|
19天前
|
存储 Java 索引
Java中的数据结构:ArrayList和LinkedList的比较
【10月更文挑战第28天】在Java编程世界中,数据结构是构建复杂程序的基石。本文将深入探讨两种常用的数据结构:ArrayList和LinkedList,通过直观的比喻和实例分析,揭示它们各自的优势与局限,帮助你在面对不同的编程挑战时做出明智的选择。
|
1月前
|
缓存 Java Maven
java: 警告: 源发行版 11 需要目标发行版 11 无效的目标发行版: 11 jdk版本不符,项目jdk版本为其他版本
如何解决Java项目中因JDK版本不匹配导致的编译错误,包括修改`pom.xml`文件、调整项目结构、设置Maven和JDK版本,以及清理缓存和重启IDEA。
49 1
java: 警告: 源发行版 11 需要目标发行版 11 无效的目标发行版: 11 jdk版本不符,项目jdk版本为其他版本
|
27天前
|
设计模式 Java API
[Java]静态代理与动态代理(基于JDK1.8)
本文介绍了代理模式及其分类,包括静态代理和动态代理。静态代理分为面向接口和面向继承两种形式,分别通过手动创建代理类实现;动态代理则利用反射技术,在运行时动态创建代理对象,分为JDK动态代理和Cglib动态代理。文中通过具体代码示例详细讲解了各种代理模式的实现方式和应用场景。
24 0
[Java]静态代理与动态代理(基于JDK1.8)
|
30天前
|
安全 Java 程序员
Java集合之战:ArrayList vs LinkedList,谁才是你的最佳选择?
本文介绍了 Java 中常用的两个集合类 ArrayList 和 LinkedList,分析了它们的底层实现、特点及适用场景。ArrayList 基于数组,适合频繁查询;LinkedList 基于链表,适合频繁增删。文章还讨论了如何实现线程安全,推荐使用 CopyOnWriteArrayList 来提升性能。希望帮助读者选择合适的数据结构,写出更高效的代码。
57 3
|
1月前
|
Java
让星星⭐月亮告诉你,jdk1.8 Java函数式编程示例:Lambda函数/方法引用/4种内建函数式接口(功能性-/消费型/供给型/断言型)
本示例展示了Java中函数式接口的使用,包括自定义和内置的函数式接口。通过方法引用,实现对字符串操作如转换大写、数值转换等,并演示了Function、Consumer、Supplier及Predicate四种主要内置函数式接口的应用。
27 1
|
1月前
|
Java
Java基础之 JDK8 HashMap 源码分析(中间写出与JDK7的区别)
这篇文章详细分析了Java中HashMap的源码,包括JDK8与JDK7的区别、构造函数、put和get方法的实现,以及位运算法的应用,并讨论了JDK8中的优化,如链表转红黑树的阈值和扩容机制。
27 1
|
2月前
|
Oracle Java 关系型数据库
Linux下JDK环境的配置及 bash: /usr/local/java/bin/java: cannot execute binary file: exec format error问题的解决
如果遇到"exec format error"问题,文章建议先检查Linux操作系统是32位还是64位,并确保安装了与系统匹配的JDK版本。如果系统是64位的,但出现了错误,可能是因为下载了错误的JDK版本。文章提供了一个链接,指向Oracle官网上的JDK 17 Linux版本下载页面,并附有截图说明。
Linux下JDK环境的配置及 bash: /usr/local/java/bin/java: cannot execute binary file: exec format error问题的解决
|
1月前
|
算法 Java 测试技术
数据结构 —— Java自定义代码实现顺序表,包含测试用例以及ArrayList的使用以及相关算法题
文章详细介绍了如何用Java自定义实现一个顺序表类,包括插入、删除、获取数据元素、求数据个数等功能,并对顺序表进行了测试,最后还提及了Java中自带的顺序表实现类ArrayList。
22 0