无人驾驶入门1:无人驾驶概览

本文涉及的产品
资源编排,不限时长
简介: 无人驾驶入门第一课,介绍了无人驾驶车的关键部分以及Apollo的架构,带大家入门无人驾驶技术。

最近给大家分享了《百度Apollo无人驾驶入门课程下载》,我也学习了一些,把我做的笔记分享给大家。

第一课:无人驾驶概览

课程主要介绍了无人驾驶车的关键部分以及Apollo的架构,带大家入门无人驾驶技术。

1.欢迎学习Apollo课程

2.你将学到什么?

课程概述,略。

3.什么是无人驾驶?

我们为什么需要无人驾驶?

主要是三个方面:

1、安全:人们驾车时分心走神是车祸的主要原因,但自动驾驶车不会分心走神,不会疲倦。(今天儿子说无人驾驶车也会累,它累的时候就是充电,好吧,你比爸爸更懂无人驾驶车:)

2、不再需要驾车培训和考试:人们驾车需要经过驾校培训,所有人都需要从0开始学习,驾车经验无法传承,但无人驾驶车可以自学和复制,不仅仅在驾驶过程中不断得到学习,而且还可以将学习积累的成果复制给其他车辆。

3、方便:即便驾车有愉悦感,但找停车位很痛苦,相信大家都有这样的感触,而无人驾驶车,将会和坐出租或滴滴一样,在你需要到达的地方停车,你下车后它再自己去寻找停车位。在你需要用车时,只要召唤它,它就会来到你的身边,超级方便。(感觉像不像勇士在召唤神龙?下次介绍特斯拉的召唤功能。)

无人驾驶同人类驾驶的优势对比

自动驾驶的等级划分

SAE标准将自动驾驶技术分为0~5共六个级别。

L0是完全由驾驶员控制,可能连ABS防抱死功能都没有,现在已经很少见L0级的车辆了。

L1是驾驶员辅助,车辆提供转向或加速等支持,如定速巡航功能。本级别需要驾驶员全神贯注开车。

L2是部分自动化,如ACC自适应巡航控制、LKAS车道保持辅助系统等。驾驶员需要实时监控并做好接管的准备。

L3是有条件的自动化,据说奥迪A8L就属于此级别。驾驶员此时可以基本不干预驾驶,但仍然需要随时接管车辆驾驶。

L4是高度自动化,是无人驾驶的真正开始,此时不需要人类介入,可以没有方向盘或油门、刹车等控制装置,原则上只要有地图的地方就能实现自动驾驶。百度Apollo已经开始量产此方案,在限定园区环境下的L4无人驾驶,阿波龙应该就是。

L5是完全自动化,车辆可以完全自动驾驶,只要人类能到的地方,无人驾驶车一样可以到达,甚至比人类更高效更安全。

自动驾驶技术的6个级别

关于自动驾驶的等级划分,后续我再专门写一篇文章。

4.Sebastian欢迎辞

略。

5.无人驾驶车的运作方式

这篇是David silver在TED的演讲,但看完这9分钟的视频,基本可以了解无人驾驶的运作方式,是最基础的入门课,强烈建议0基础人员学习。

无人驾驶总共有五个重要的单元,分别是:计算机视觉、传感器融合、定位、路径规划、控制。

无人驾驶的5个重要单元

计算机视觉用来寻找车道、车辆、行人、红绿灯等对象,并能有效的区分车道线、车辆数量、红绿灯信号等信息,计算机视觉类似于人类的眼睛,看懂周围的世界。

计算机视觉分析

传感器融合是用来加深对视觉的理解,获得车辆距离、其他物体的移动速度等信息,了解自身同周围世界的关系。

传感器融合分析

定位,不是简单的GPS定位,无人驾驶需要厘米级的定位,米级误差的GPS无法满足要求,所以还需要自定位技术,需要借助地标,使用粒子滤波、三角测量等方式进行定位。

模拟定位

路径规划也不是简单的导航软件中的航线计算,导航地图的路径规划是全局概要规划,指引无人车前往哪里,而自车本身还需要通过对周围车辆和事物的判断,形成自己位姿的路径规划,通过车辆位姿的调整,避免同其他车辆或事物的碰撞,同时也影响驾乘的舒适度(比如对刹车的影响)。

路径规划

控制是无人驾驶的最后一步,简单的来说就是控制方向盘、刹车、油门、车灯等设备,但通过控制获得的行车路径,和路径规划中的理想路径,如何完全吻合,也同样充满了考验,只是对于电脑来说相对简单,它们可以做到两者非常的接近,而人类操作实际上比较难(侧面说明现在车道宽度较宽:)。

控制模拟

个人的总结:摄像头让车辆看清周围的事物,雷达等传感器让车了解自身同周围物体的关系,通过地标(高精度地图中的特征)定位获得车辆厘米级定位,结合GPS定位(绝对定位),可以获得车辆在高精度地图中的绝对位置。路径规划既需要turn by turn的道路级路径规划,也需要通过自车同周围事物的距离速度等信息判断,做出自车位姿的路径规划,前者是大方向,后者是细节操作,而控制就是为了实现同规划路径的吻合。至此,车辆就可以完成一次从起点到终点的完整行程。

6.Apollo团队与架构

略。

7.参考车辆与硬件平台

做无人驾驶开发,就需要一辆可以通过电子控制的车辆,原来驾驶员对方向盘、油门刹车等的物理控制,变成了电子信号控制,这样的车辆就叫做线控驾驶车辆。(欢迎浏览“聊聊用机器人做无人驾驶”一文)

这样的车辆可以通过控制器区域网络(CAN总线)向车辆发送加速、制动和转向信号等信息,通过GPS可以获得绝对位置信息,通过惯性测量装置(IMU)可以获得车辆运动速度、加速度和位置等信息,通过激光雷达可以获得位置点云信息,通过摄像头捕获图像信息,通过雷达了解障碍物信息。当然,还有不可或缺的电脑,他是无人驾驶的大脑。

摄像头、GPS、IMU、激光雷达、雷达以及PC等,这些是无人驾驶所需要的硬件平台。

无人驾驶硬件平台

8.开源软件架构

开放软件架构共分为三层:实时操作系统、运行时的框架和应用程序模块层。

实时操作系统(RTOS)可以确保在给定时间内完成特定任务,实时指的是能够进行及时分析操作。Apollo RTOS是由Ubuntu Linux加Apollo内核组成。

RTOS

运行时的框架是Apollo的操作环境,它是ROS(机器人操作系统)的定制版,即Apollo将ROS作为在RTOS上运行的软件框架。

ROS

Apollo团队对ROS进行了改进,如:共享内存的功能和性能、去中心化、数据兼容性等。

共享内存:原来各模块之间同一内容的使用可能需要复制内存,共享内存支持“一次写入 多次读取”模式,支持多个模块的使用。

共享内存

去中心化解决了单点故障问题,原来ROS的各个模块都需要由ROS的主节点来控制,一旦主节点出现问题,那么整个系统也就无法运行了,Apollo改为将所有节点放在一个公共域中,域中每个节点都有关于其他节点的信息,公共域取代原有ROS的主节点,消除了单节点故障的风险。

去中心化

数据兼容性方面,原来ROS不同模块之间的通讯是通过名为ROS消息的接口语言进行相互通信的,一旦这个消息格式有所变化,则两个节点间的通讯就会失败, Apollo团队将ROS消息改成了名为protobuf的接口语言,protobuf是一种结构化数据序列化方法,通信过程中即便消息格式升级了,也能在解析过程中接受旧的消息格式,此举有效解决了兼容性问题。

数据兼容性改进

应用程序模块包括地图引擎、定位、感知、规划、控制、端到端的驾驶以及人机接口(HMI)等。

应用程序模块

9.云服务

Apollo提供了云端服务功能,只要你能联网并拥有许可账户,即可同云端进行通信,不仅仅可以完成数据的存取访问,也可以获得软件服务,包括高精度地图、仿真环境、数据平台、安全、空中升级软件以及DuerOS等。

云服务内容

仿真平台聚合了大量驾驶数据,可以是开发人员能够检测和验证无人驾驶软件系统,仿真平台不仅仅可以提供大量的数据模拟,更可以通过等碰撞检测、交通灯识别、速度限制、障碍物检测、路线逻辑等指标对实现结果进行评估。

数据平台为仿真平台提供了大量的数据,这部分数据可以是从真实驾驶环境记录获得,也可以是虚拟生成的数据,前者可以通过已获得的结果进行算法等验证,后者可以快速搭建验证某一算法的环境。在验证算法过程中,可能需要带有标签注释的数据,即已获得已知结果的数据,比如交通信号灯、带边界的障碍物、语义分割数据等。

带有标签注释的数据

10.无人驾驶车纳米学位

学完本次免费课程觉得不过瘾,可以付费去优达学院学习专业课程,不仅仅获得的技能更强,同时也可以作为履历的一部分。(此处应该由优达学院支付广告费:)

11.开启专题学习之旅

略。

好了,至此,你是否对无人驾驶有了更清晰的了解呢?欢迎大家关注我的公众号罗孚传说(RoverTang_com),输入“百度Apollo无人驾驶课程”下载课程视频,也可以访问原文了解更多信息。

相关实践学习
使用ROS创建VPC和VSwitch
本场景主要介绍如何利用阿里云资源编排服务,定义资源编排模板,实现自动化创建阿里云专有网络和交换机。
阿里云资源编排ROS使用教程
资源编排(Resource Orchestration)是一种简单易用的云计算资源管理和自动化运维服务。用户通过模板描述多个云计算资源的依赖关系、配置等,并自动完成所有资源的创建和配置,以达到自动化部署、运维等目的。编排模板同时也是一种标准化的资源和应用交付方式,并且可以随时编辑修改,使基础设施即代码(Infrastructure as Code)成为可能。 产品详情:https://www.aliyun.com/product/ros/
目录
相关文章
|
8月前
|
机器学习/深度学习 监控 安全
智能化视野下的守卫者:基于深度学习的图像识别技术在智能监控领域的革新应用
【4月更文挑战第9天】 随着人工智能技术的飞速发展,深度学习已经成为了推动计算机视觉进步的重要力量。尤其在智能监控领域,基于深度学习的图像识别技术正逐步转变着传统监控系统的功能与效率。本文旨在探讨深度学习技术如何赋能智能监控,提高对场景理解的准确性,增强异常行为检测的能力,并讨论其在实际部署中所面临的挑战和解决方案。通过深入分析,我们揭示了深度学习在智能监控中的应用不仅优化了安全防范体系,也为城市管理和公共安全提供了有力的技术支持。
|
23天前
|
传感器 机器学习/深度学习 人工智能
AI在自动驾驶汽车中的应用与未来展望
AI在自动驾驶汽车中的应用与未来展望
85 9
|
7月前
|
传感器 机器学习/深度学习 人工智能
自动驾驶技术概述
自动驾驶技术概述
76 0
|
8月前
|
机器学习/深度学习 传感器 自动驾驶
【专栏】深度学习将继续推动自动驾驶技术的进步,提供更安全、便捷的出行方案
【4月更文挑战第27天】本文探讨了深度学习在自动驾驶图像识别中的应用,该技术通过模拟人脑认知处理大量标注数据,实现对图像的准确识别。深度学习模型在特征提取和泛化能力上优于传统方法,能用于识别交通标志、车辆、行人等,进行障碍物检测与避障,以及行为预测和决策制定。尽管面临数据获取、计算资源和泛化能力的挑战,但随着技术发展,深度学习将继续推动自动驾驶技术的进步,提供更安全、便捷的出行方案。
130 5
|
8月前
|
机器学习/深度学习 人工智能 自动驾驶
智能汽车自动驾驶技术开发需要以下知识储备
【5月更文挑战第5天】自动驾驶汽车融合多种技术:传感器感知环境与定位;计算机视觉处理图像;路径规划与决策制定应对路况;控制执行器确保驾驶稳定性;运用人工智能和机器学习处理数据;通过通信网络实现车联协作;理解车辆动力学优化算法;确保网络安全与可靠性;并遵循法规道德标准。多学科知识是自动驾驶核心技术的基础。
74 0
|
机器学习/深度学习 人工智能 自动驾驶
智能汽车自动驾驶技术开发需要哪些知识储备
智能汽车自动驾驶技术开发需要哪些知识储备
221 0
|
传感器 机器学习/深度学习 自动驾驶
自动驾驶概述
汽车行业处在一个变革的时代,自动驾驶相关技术发展应用如火如荼。关注或者想了解这个领域的人也越来越多。本文的目标在于帮助大家对自动驾驶技术有一个全局的基础认识。文章分别介绍了自动驾驶基本原理,意义,分级以及相关行业背景。
1079 0
自动驾驶概述
|
机器学习/深度学习 传感器 自动驾驶
自动驾驶汽车自主导航附matlab代码
自动驾驶汽车自主导航附matlab代码
|
传感器 人工智能 监控
机器人的分类、发展史、现状及国内外发展趋势
机器人的分类、发展史、现状及国内外发展趋势
|
JSON 人工智能 文字识别
视觉AI五天训练营 Day04 车辆保险系统搭建
视觉AI五天训练营 Day04 车辆保险系统搭建
939 0
视觉AI五天训练营 Day04 车辆保险系统搭建

热门文章

最新文章

下一篇
开通oss服务