从linux源码看socket的阻塞和非阻塞

简介:

从linux源码看socket的阻塞和非阻塞

笔者一直觉得如果能知道从应用到框架再到操作系统的每一处代码,是一件Exciting的事情。
大部分高性能网络框架采用的是非阻塞模式。笔者这次就从linux源码的角度来阐述socket阻塞(block)和非阻塞(non_block)的区别。 本文源码均来自采用Linux-2.6.24内核版本。

一个TCP非阻塞client端简单的例子

如果我们要产生一个非阻塞的socket,在C语言中如下代码所示:

// 创建socket
int sock_fd = socket(AF_INET, SOCK_STREAM, 0);
...
// 更改socket为nonblock
fcntl(sock_fd, F_SETFL, fdflags | O_NONBLOCK);
// connect
....
while(1)  {  
    int recvlen = recv(sock_fd, recvbuf, RECV_BUF_SIZE) ; 
    ......
} 
...

由于网络协议非常复杂,内核里面用到了大量的面向对象的技巧,所以我们从创建连接开始,一步一步追述到最后代码的调用点。

socket的创建

很明显,内核的第一步应该是通过AF_INET、SOCK_STREAM以及最后一个参数0定位到需要创建一个TCP的socket,如下图绿线所示:
inet_family
我们跟踪源码调用

socket(AF_INET, SOCK_STREAM, 0)
    |->sys_socket 进入系统调用
        |->sock_create
            |->__sock_create

进一步分析__sock_create的代码判断:

const struct net_proto_family *pf;
// RCU(Read-Copy Update)是linux的一种内核同步方法,在此不阐述
// family=INET
pf = rcu_dereference(net_families[family]);
err = pf->create(net, sock, protocol);

由于family是AF_INET协议,注意在操作系统里面定义了PF_INET等于AF_INET,
内核通过函数指针实现了对pf(net_proto_family)的重载。如下图所示:
net_proto_family

则通过源码可知,由于是AF_INET(PF_INET),所以net_families[PF_INET].create=inet_create(以后我们都用PF_INET表示),即
pf->create = inet_create;
进一步追溯调用:

inet_create(struct net *net, struct socket *sock, int protocol){
    Sock* sock;
    ......
    // 此处是寻找对应协议处理器的过程
lookup_protocol:
    // 迭代寻找protocol==answer->protocol的情况
    list_for_each_rcu(p, &inetsw[sock->type]) answer = list_entry(p, struct inet_protosw, list);

        /* Check the non-wild match. */
        if (protocol == answer->protocol) {
            if (protocol != IPPROTO_IP)
                break;
        }
    ......
    // 这边answer指的是SOCK_STREAM
    sock->ops = answer->ops;
    answer_no_check = answer->no_check;
    // 这边sk->prot就是answer_prot=>tcp_prot
    sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot);
    sock_init_data(sock, sk);
    ......
}

上面的代码就是在INET中寻找SOCK_STREAM的过程了
我们再看一下inetsw[SOCK_STREAM]的具体配置:

static struct inet_protosw inetsw_array[] =
{
    {
        .type =       SOCK_STREAM,
        .protocol =   IPPROTO_TCP,
        .prot =       &tcp_prot,
        .ops =        &inet_stream_ops,
        .capability = -1,
        .no_check =   0,
        .flags =      INET_PROTOSW_PERMANENT |
                  INET_PROTOSW_ICSK,
    },
    ......
}

这边也用了重载,AF_INET有TCP、UDP以及Raw三种:
sock_ops_proto

从上述代码,我们可以清楚的发现sock->ops=&inet_stream_ops;

const struct proto_ops inet_stream_ops = {
    .family           = PF_INET,
    .owner           = THIS_MODULE,
    ......
    .sendmsg       = tcp_sendmsg,
    .recvmsg       = sock_common_recvmsg,
    ......
}    

即sock->ops->recvmsg = sock_common_recvmsg;
同时sock->sk->sk_prot = tcp_prot;

我们再看下tcp_prot中的各个函数重载的定义:

struct proto tcp_prot = {
    .name            = "TCP",
    .close            = tcp_close,
    .connect        = tcp_v4_connect,
    .disconnect        = tcp_disconnect,
    .accept            = inet_csk_accept,
    ......
    // 我们重点考察tcp的读
    .recvmsg        = tcp_recvmsg,
    ......
}

fcntl控制socket的阻塞非阻塞状态

我们用fcntl修改socket的阻塞非阻塞状态。
事实上:
fcntl的作用就是将O_NONBLOCK标志位存储在sock_fd对应的filp结构的f_lags里,如下图所示。

fcntl

fcntl(sock_fd, F_SETFL, fdflags | O_NONBLOCK);
    |->setfl

追踪setfl代码:

static int setfl(int fd, struct file * filp, unsigned long arg) {
    ......
    filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
    ......
}

上图中,由sock_fd在task_struct(进程结构体)->files_struct->fd_array中找到对应的socket的file描述符,再修改file->flags

在调用socket.recv的时候

我们跟踪源码调用:

socket.recv
    |->sys_recv
        |->sys_recvfrom
            |->sock_recvmsg
                |->__sock_recvmsg
                    |->sock->ops->recvmsg

由上文可知:
sock->ops->recvmsg = sock_common_recvmsg;

sock

值得注意的是,在sock_recmsg中,有对标识O_NONBLOCK的处理

    if (sock->file->f_flags & O_NONBLOCK)
        flags |= MSG_DONTWAIT;

上述代码中sock关联的file中获取其f_flags,如果flags有O_NONBLOCK标识,那么就设置msg_flags为MSG_DONTWAIT(不等待)。
fcntl与socket就是通过其共同操作File结构关联起来的。

继续跟踪调用

sock_common_recvmsg

int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
            struct msghdr *msg, size_t size, int flags) {
    ......
    // 如果flags的MSG_DONTWAIT标识置位,则传给recvmsg的第5个参数为正,否则为0
    err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
                   flags & ~MSG_DONTWAIT, &addr_len);
    .....                   
}

由上文可知:
sk->sk_prot->recvmsg 其中sk_prot=tcp_prot,即最终调用的是tcp_prot->tcp_recvmsg,
上面的代码可以看出,如果fcntl(O_NONBLOCK)=>MSG_DONTWAIT置位=>(flags & MSG_DONTWAIT)>0, 再结合tcp_recvmsg的函数签名,即如果设置了O_NONBLOCK的话,设置给tcp_recvmsg的nonblock参数>0,关系如下图所示:
fcntl_recvmsg.png

最终的调用逻辑tcp_recvmsg

首先我们看下tcp_recvmsg的函数签名:

int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
        size_t len, int nonblock, int flags, int *addr_len)

显然我们关注焦点在(int nonblock这个参数上):

int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
        size_t len, int nonblock, int flags, int *addr_len){
    ......    
    // copied是指向用户空间拷贝了多少字节,即读了多少
    int copied;
    // target指的是期望多少字节
    int target;
    // 等效为timo = nonblock ? 0 : sk->sk_rcvtimeo;
    timeo = sock_rcvtimeo(sk, nonblock);
    ......    
    // 如果设置了MSG_WAITALL标识target=需要读的长度
    // 如果未设置,则为最低低水位值
    target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
    ......

    do{
        // 表明读到数据
        if (copied) {
            // 注意,这边只要!timeo,即nonblock设置了就会跳出循环
            if (sk->sk_err ||
                sk->sk_state == TCP_CLOSE ||
                (sk->sk_shutdown & RCV_SHUTDOWN) ||
                !timeo ||
                signal_pending(current) ||
                (flags & MSG_PEEK))
            break;
        }else{
            // 到这里,表明没有读到任何数据
            // 且nonblock设置了导致timeo=0,则返回-EAGAIN,符合我们的预期
            if (!timeo) {
                copied = -EAGAIN;
                break;
        }
        // 这边如果堵到了期望的数据,继续,否则当前进程阻塞在sk_wait_data上
        if (copied >= target) {
            /* Do not sleep, just process backlog. */
            release_sock(sk);
            lock_sock(sk);
        } else
            sk_wait_data(sk, &timeo);
    } while (len > 0);        
    ......
    return copied
}

上面的逻辑归结起来就是:
(1)在设置了nonblock的时候,如果copied>0,则返回读了多少字节,如果copied=0,则返回-EAGAIN,提示应用重复调用。
(2)如果没有设置nonblock,如果读取的数据>=期望,则返回读取了多少字节。如果没有则用sk_wait_data将当前进程等待。
如下流程图所示:

tcp_recv

阻塞函数sk_wait_data

sk_wait_data代码-函数为:

    // 将进程状态设置为可打断INTERRUPTIBLE
    prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
    set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
    // 通过调用schedule_timeout让出CPU,然后进行睡眠
    rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
    // 到这里的时候,有网络事件或超时事件唤醒了此进程,继续运行
    clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
    finish_wait(sk->sk_sleep, &wait);

该函数调用schedule_timeout进入睡眠,其进一步调用了schedule函数,首先从运行队列删除,其次加入到等待队列,最后调用和体系结构相关的switch_to宏来完成进程间的切换。
如下图所示:
task_schedule

阻塞后什么时候恢复运行呢

情况1:有对应的网络数据到来

首先我们看下网络分组到来的内核路径,网卡发起中断后调用netif_rx将事件挂入CPU的等待队列,并唤起软中断(soft_irq),再通过linux的软中断机制调用net_rx_action,如下图所示:

low_recv
注:上图来自PLKA(<<深入Linux内核架构>>)
紧接着跟踪next_rx_action

next_rx_action
    |-process_backlog
        ......
            |->packet_type->func 在这里我们考虑ip_rcv
                    |->ipprot->handler 在这里ipprot重载为tcp_protocol
                        (handler 即为tcp_v4_rcv)                    

紧接着tcp_v4_rcv:

tcp_input.c
tcp_v4_rcv
    |-tcp_v4_do_rcv
        |-tcp_rcv_state_process
            |-tcp_data_queue
                |-sk->sk_data_ready=sock_def_readable
                    |-wake_up_interruptible
                        |-__wake_up
                            |-__wake_up_common

在这里__wake_up_common将停在当前wait_queue_head_t中的进程唤醒,即状态改为task_running,等待CFS调度以进行下一步的动作,如下图所示。

wake_up

情况2:设定的超时时间到来

在前面调用sk_wait_event中调用了schedule_timeout

fastcall signed long __sched schedule_timeout(signed long timeout) {
    ......
    // 设定超时的回掉函数为process_timeout
    setup_timer(&timer, process_timeout, (unsigned long)current);
    __mod_timer(&timer, expire);
    // 这边让出CPU
    schedule();
    del_singleshot_timer_sync(&timer);
    timeout = expire - jiffies;
 out:
     // 返回经过了多长事件
    return timeout < 0 ? 0 : timeout;    
}

process_timeout函数即是将此进程重新唤醒

static void process_timeout(unsigned long __data)
{
    wake_up_process((struct task_struct *)__data);
}

总结

linux内核源代码博大精深,阅读其代码很费周折。希望笔者这篇文章能帮助到阅读linux网络协议栈代码的人。

原文地址

https://my.oschina.net/alchemystar/blog/1791017

额外添加

我的博客即将搬运同步至腾讯云+社区,邀请大家一同入驻:https://cloud.tencent.com/developer/support-plan

相关文章
|
6月前
|
网络协议 算法 Linux
【嵌入式软件工程师面经】Linux网络编程Socket
【嵌入式软件工程师面经】Linux网络编程Socket
200 1
|
2月前
|
网络协议 Linux 网络性能优化
Linux基础-socket详解、TCP/UDP
综上所述,Linux下的Socket编程是网络通信的重要组成部分,通过灵活运用TCP和UDP协议,开发者能够构建出满足不同需求的网络应用程序。掌握这些基础知识,是进行更复杂网络编程任务的基石。
179 1
|
4月前
|
Linux 开发者
深入理解Linux I/O模型:同步、异步、阻塞与非阻塞
【8月更文挑战第1天】在探索操作系统的奥秘中,I/O模型作为影响性能的关键因素之一,常常让开发者们感到困惑。本文将通过浅显易懂的语言和实际代码示例,揭示Linux下同步与异步、阻塞与非阻塞的概念及其区别,并指导如何在实际应用中选择合适的I/O模型以优化程序性能。
171 1
|
4月前
|
Linux Python
【Azure 应用服务】Azure App Service For Linux 上实现 Python Flask Web Socket 项目 Http/Https
【Azure 应用服务】Azure App Service For Linux 上实现 Python Flask Web Socket 项目 Http/Https
|
5月前
|
缓存 网络协议 算法
【Linux系统编程】深入剖析:四大IO模型机制与应用(阻塞、非阻塞、多路复用、信号驱动IO 全解读)
在Linux环境下,主要存在四种IO模型,它们分别是阻塞IO(Blocking IO)、非阻塞IO(Non-blocking IO)、IO多路复用(I/O Multiplexing)和异步IO(Asynchronous IO)。下面我将逐一介绍这些模型的定义:
282 2
|
7月前
|
算法 Linux 调度
xenomai内核解析--xenomai与普通linux进程之间通讯XDDP(一)--实时端socket创建流程
xenomai与普通linux进程之间通讯XDDP(一)--实时端socket创建流程
498 1
xenomai内核解析--xenomai与普通linux进程之间通讯XDDP(一)--实时端socket创建流程
|
7月前
|
网络协议 Ubuntu Unix
Linux 下使用 socket 实现 TCP 客户端
Linux 下使用 socket 实现 TCP 客户端
203 1
|
7月前
|
存储 算法 网络协议
【探索Linux】P.26(网络编程套接字基本概念—— socket编程接口 | socket编程接口相关函数详细介绍 )
【探索Linux】P.26(网络编程套接字基本概念—— socket编程接口 | socket编程接口相关函数详细介绍 )
79 0
|
7月前
|
存储 算法 Linux
【探索Linux】P.17(进程信号 —— 信号保存 | 阻塞信号 | sigprocmask() | sigpending() )
【探索Linux】P.17(进程信号 —— 信号保存 | 阻塞信号 | sigprocmask() | sigpending() )
113 0
|
7月前
|
网络协议 Ubuntu Unix
Linux 下使用 socket 实现 TCP 服务端
Linux 下使用 socket 实现 TCP 服务端