Java LinkedHashMap类源码解析

简介:

LinkedHashMap继承了HashMap,他在HashMap的基础上增加了一个双向链表的结构,链表默认维持key插入的顺序,重复的key值插入不会改变顺序,适用于使用者需要返回一个顺序相同的map对象的情况。还可以生成access-order顺序的版本,按照最近访问顺序来存储,刚被访问的结点处于链表的末尾,适合LRU,put get compute merge都算作一次访问,其中put key值相同的结点也算作一次访问,replace只有在换掉一个键值对的时候才算一次访问,putAll产生的访问顺序取决于原本map的迭代器实现。

在插入键值对时,可以通过对removeEldestEntry重写来实现新键值对插入时自动删除最旧的键值对

拥有HashMap提供的方法,迭代器因为是通过遍历双向链表,所以额外开销与size成正比与capacity无关,因此选择过大的初始大小对于遍历时间的增加没有HashMap严重,后者的遍历时间依赖与capacity。

同样是非线程安全方法,对于LinkedHashMap来说,修改结构的操作除了增加和删除键值对外,还有对于access-order时进行了access导致迭代器顺序改变,主要是get操作,对于插入顺序的来说,仅仅修改一个已有key值的value值不是一个修改结构的操作,但对于访问顺序,put和get已有的key值会改变顺序。迭代器也是fail-fast设计,但是fail-fast只是一个调试功能,一个设计良好的程序不应该出现这个错误

因为HashMap加入了TreeNode,所以现在LinkedHashMap也有这个功能

 以下描述中的链表,若无特别说明都是指LinkedHashMap的双向链表


先来看一下基本结构,每个键值对加入了前后指针,集合加入了头尾指针来形成双向链表,accessOrder代表链表是以访问顺序还是插入顺序存储
static class Entry<K,V> extends HashMap.Node<K,V> {
        Entry<K,V> before, after;//增加了先后指针来形成双向链表
        Entry(int hash, K key, V value, Node<K,V> next) {
            super(hash, key, value, next);
        }
    }

    /**
     * The head (eldest) of the doubly linked list.头部
     */
    transient LinkedHashMap.Entry<K,V> head;

    /**
     * The tail (youngest) of the doubly linked list.尾部
     */
    transient LinkedHashMap.Entry<K,V> tail;

    //true访问顺序 false插入顺序
    final boolean accessOrder;

然后是几个内部方法。linkNodeLast将p连接到链表尾部

    private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
        LinkedHashMap.Entry<K,V> last = tail;
        tail = p;
        if (last == null)
            head = p;//原本链表为空则p同时为头部
        else {
            p.before = last;
            last.after = p;
        }
    }

transferLinks用dst替换src
    private void transferLinks(LinkedHashMap.Entry<K,V> src,
                               LinkedHashMap.Entry<K,V> dst) {
        LinkedHashMap.Entry<K,V> b = dst.before = src.before;
        LinkedHashMap.Entry<K,V> a = dst.after = src.after;
        if (b == null)
            head = dst;
        else
            b.after = dst;
        if (a == null)
            tail = dst;
        else
            a.before = dst;
    }

reinitialize在调用HashMap方法的基础上,将head和tail设为null
    void reinitialize() {
        super.reinitialize();
        head = tail = null;
    }

newNode生成一个LinkedHashMap结点,next指向e,插入到LinkedHashMap链表末端
    Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
        LinkedHashMap.Entry<K,V> p =
            new LinkedHashMap.Entry<K,V>(hash, key, value, e);//新建一个键值对,next指向e
        linkNodeLast(p);//p插入到LinkedHashMap链表末端
        return p;
    }

replacementNode根据原结点生成一个LinkedHashMap结点替换原结点
    Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
        LinkedHashMap.Entry<K,V> q = (LinkedHashMap.Entry<K,V>)p;
        LinkedHashMap.Entry<K,V> t =
            new LinkedHashMap.Entry<K,V>(q.hash, q.key, q.value, next);//生成一个新的键值对next是给出的next参数
        transferLinks(q, t);//用t替换q
        return t;
    }

newTreeNode生成一个TreeNode结点,next指向next,插入到LinkedHashMap链表末端
    TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
        TreeNode<K,V> p = new TreeNode<K,V>(hash, key, value, next);//生成一个TreeNode,next指向参数next
        linkNodeLast(p);//p插入到LinkedHashMap链表末端
        return p;
    }

replacementTreeNode根据结点p生成一个新的TreeNode,next设为给定的next,替换原本的p
    TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
        LinkedHashMap.Entry<K,V> q = (LinkedHashMap.Entry<K,V>)p;
        TreeNode<K,V> t = new TreeNode<K,V>(q.hash, q.key, q.value, next);
        transferLinks(q, t);//根据结点p生成一个新的TreeNode,next设为给定的next,替换原本的p
        return t;
    }

afterNodeRemoval从LinkedHashMap的链上移除结点e
    void afterNodeRemoval(Node<K,V> e) { 
        LinkedHashMap.Entry<K,V> p =
            (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
        p.before = p.after = null;
        if (b == null)
            head = a;
        else
            b.after = a;
        if (a == null)
            tail = b;
        else
            a.before = b;
    }

afterNodeInsertion可能移除最旧的结点,需要evict为true同时链表不为空同时removeEldestEntry需要重写
    void afterNodeInsertion(boolean evict) { 
        LinkedHashMap.Entry<K,V> first;
        if (evict && (first = head) != null && removeEldestEntry(first)) {//removeEldestEntry需要重写才从发挥作用,否则一定返回false
            K key = first.key;//移除链表头部的结点
            removeNode(hash(key), key, null, false, true);
        }
    }

afterNodeAccess在访问过后将结点e移动到链表尾部,需要Map是access-order,若移动成功则增加modCount
    void afterNodeAccess(Node<K,V> e) { 
        LinkedHashMap.Entry<K,V> last;
        if (accessOrder && (last = tail) != e) {//Map是access-order同时e不是链表的尾部
            LinkedHashMap.Entry<K,V> p =
                (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
            p.after = null;
            if (b == null)//将结点e从链表中剪下
                head = a;
            else
                b.after = a;
            if (a != null)
                a.before = b;
            else
                last = b;
            if (last == null)
                head = p;
            else {
                p.before = last;
                last.after = p;
            }
            tail = p;//结点e移动到链表尾部
            ++modCount;//因为有access-order下结点被移动,所以增加modCount
        }
    }

构造函数方面,accessOrder默认是false插入顺序,初始大小为16,负载因子为0.75,这里是同HashMap。复制构造也是调用了HashMap.putMapEntries方法

containsValue遍历链表寻找相等的value值,这个操作一定不会造成结构改变

    public boolean containsValue(Object value) {
        for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after) {//检查同样是根据LinkedHashMap提供的链表顺序进行遍历
            V v = e.value;
            if (v == value || (value != null && value.equals(v)))
                return true;
        }
        return false;
    }
 

get方法复用HashMap的getNode方法,若找到结点且Map是访问顺序时,要将访问的结点放到链表最后,若没找到则返回null。而getOrDefault仅有的区别是没找到时返回defaultValue

    public V get(Object key) {
        Node<K,V> e;
        if ((e = getNode(hash(key), key)) == null)//复用HashMap的getNode方法
            return null;
        if (accessOrder)
            afterNodeAccess(e);//access-order时将e放到队尾
        return e.value;
    }

    public V getOrDefault(Object key, V defaultValue) {
       Node<K,V> e;
       if ((e = getNode(hash(key), key)) == null)
           return defaultValue;//复用HashMap的getNode方法,若没有找到对应的结点则返回defaultValue
       if (accessOrder)
           afterNodeAccess(e);//access-order时将e放到队尾
       return e.value;
   }

clear方法在HashMap的基础上要把head和tail设为null
    public void clear() {
        super.clear();
        head = tail = null;
    }

removeEldestEntry在put和putAll插入键值对时调用,原本是一定返回false的,如果要自动删除最旧的键值对要返回true,需要进行重写。比如下面这个例子,控制size不能超过100
     private static final int MAX_ENTRIES = 100;

     protected boolean removeEldestEntry(Map.Entry eldest) {
        return size() > MAX_ENTRIES;
     }

下面两个方法和HashMap相似,返回key的Set和value的Collection还有返回键值对的Set,这个是直接引用,所以对它们的remove之类的修改会直接反馈到LinkedHashMap上
    public Set<K> keySet() {
        Set<K> ks = keySet;
        if (ks == null) {
            ks = new LinkedKeySet();
            keySet = ks;
        }
        return ks;//返回key值的set
    }

    public Collection<V> values() {
        Collection<V> vs = values;
        if (vs == null) {
            vs = new LinkedValues();
            values = vs;
        }
        return vs;//返回一个包含所有value值的Collection
    }

    public Set<Map.Entry<K,V>> entrySet() {
        Set<Map.Entry<K,V>> es;
        return (es = entrySet) == null ? (entrySet = new LinkedEntrySet()) : es;//返回一个含有所有键值对的Set
    }

检查HashMap的putVal方法,我们可以看到在找到了相同key值并修改value值时会调用afterNodeAccess,对于access-order会改变结点顺序
            if (e != null) { // 找到了相同的key则修改value值并返回旧的value
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }

相关文章
|
1月前
|
Java
Java的CAS机制深度解析
CAS(Compare-And-Swap)是并发编程中的原子操作,用于实现多线程环境下的无锁数据同步。它通过比较内存值与预期值,决定是否更新值,从而避免锁的使用。CAS广泛应用于Java的原子类和并发包中,如AtomicInteger和ConcurrentHashMap,提升了并发性能。尽管CAS具有高性能、无死锁等优点,但也存在ABA问题、循环开销大及仅支持单变量原子操作等缺点。合理使用CAS,结合实际场景选择同步机制,能有效提升程序性能。
|
18天前
|
机器学习/深度学习 JSON Java
Java调用Python的5种实用方案:从简单到进阶的全场景解析
在机器学习与大数据融合背景下,Java与Python协同开发成为企业常见需求。本文通过真实案例解析5种主流调用方案,涵盖脚本调用到微服务架构,助力开发者根据业务场景选择最优方案,提升开发效率与系统性能。
167 0
|
14天前
|
Java 开发者
Java并发编程:CountDownLatch实战解析
Java并发编程:CountDownLatch实战解析
301 100
|
2月前
|
存储 缓存 Java
Java数组全解析:一维、多维与内存模型
本文深入解析Java数组的内存布局与操作技巧,涵盖一维及多维数组的声明、初始化、内存模型,以及数组常见陷阱和性能优化。通过图文结合的方式帮助开发者彻底理解数组本质,并提供Arrays工具类的实用方法与面试高频问题解析,助你掌握数组核心知识,避免常见错误。
|
9天前
|
Java 开发者
Java 函数式编程全解析:静态方法引用、实例方法引用、特定类型方法引用与构造器引用实战教程
本文介绍Java 8函数式编程中的四种方法引用:静态、实例、特定类型及构造器引用,通过简洁示例演示其用法,帮助开发者提升代码可读性与简洁性。
|
18天前
|
安全 Java API
Java SE 与 Java EE 区别解析及应用场景对比
在Java编程世界中,Java SE(Java Standard Edition)和Java EE(Java Enterprise Edition)是两个重要的平台版本,它们各自有着独特的定位和应用场景。理解它们之间的差异,对于开发者选择合适的技术栈进行项目开发至关重要。
81 1
|
18天前
|
存储 小程序 Java
热门小程序源码合集:微信抖音小程序源码支持PHP/Java/uni-app完整项目实践指南
小程序已成为企业获客与开发者创业的重要载体。本文详解PHP、Java、uni-app三大技术栈在电商、工具、服务类小程序中的源码应用,提供从开发到部署的全流程指南,并分享选型避坑与商业化落地策略,助力开发者高效构建稳定可扩展项目。
|
2月前
|
存储 缓存 算法
Java数据类型与运算符深度解析
本文深入解析Java中容易混淆的基础知识,包括八大基本数据类型(如int、Integer)、自动装箱与拆箱机制,以及运算符(如&与&&)的使用区别。通过代码示例剖析内存布局、取值范围及常见陷阱,帮助开发者写出更高效、健壮的代码,并附有面试高频问题解析,夯实基础。
|
7月前
|
算法 测试技术 C语言
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
658 29
|
7月前
|
前端开发 数据安全/隐私保护 CDN
二次元聚合短视频解析去水印系统源码
二次元聚合短视频解析去水印系统源码
188 4

推荐镜像

更多
  • DNS